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(left) Evangelinos & Karniadakis, JFM 1999. (right) Champagne, JFM 1978.
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Energy spectrum and linear stability analysis

@ We consider the state that precedes the onset of instabilities
= the system is stable but subject to small 3D perturbations:

e To understand how spectral representation can effectively highlight
the nonlinear interaction among different scales;

e To quantify the degree of generality on the value of the exponent of
the inertial range;

@ The set of small 3D perturbations:

e Constitutes a system of multiple spatial and temporal scales;

e Includes all the processes of the perturbative Navier-Stokes equa-
tions (linearized convective transport, molecular diffusion, linearized
vortical stretching);

@ Leaves aside the nonlinear interaction among the different scales;

@ The perturbative evolution is ruled out by the initial-value prob-
lem associated to the Navier-Stokes linearized formulation.
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@ We determine the exponent of the inertial range of arbitrary
longitudinal and transversal perturbations acting on a typical
shear flow, i.e. the bluff-body wake:

e Base flow approximated through 2D asymptotic Navier-Stokes ex-
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@ We determine the exponent of the inertial range of arbitrary
longitudinal and transversal perturbations acting on a typical
shear flow, i.e. the bluff-body wake:

e Base flow approximated through 2D asymptotic Navier-Stokes ex-
pansions (Tordella & Belan, Phys. Fluids, 2003; Tordella & Scar-
soglio, Phys. Lett. A, 2009) = (U(x, y; Re), V(x, y; Re));

e Recent set of solutions yielded by the initial-value problem applied
to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math.,
2009; Scarsoglio et al., Phys. Rev. E, 2010);

@ Variety of the transient linear dynamics = Understand how the
energy spectrum behaves and compare it with the exponent of
the developed turbulent state:

e The difference is large = quantitative measure of the nonlinear in-
teraction in spectral terms;

e The difference is small = higher degree of universality on the value
of the exponent of the inertial range, not necessarily associated to 4
the nonlinear interaction.
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Initial-value problem formulation Mathematical framework
Measure of the growth

Perturbation scheme

@ Linear three-dimensional perturbative equations in terms of veloc-
ity and vorticity (Criminale & Drazin, Stud. Appl. Math., 1990);
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Initial-value problem formulation Mathematical framework
Measure of the growth

Perturbative equations

@ Perturbative linearized system:

o
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The transversal velocity and vorticity components are ¥ and &,
respectively, [ is defined as I = 8y, — 9,y.
@ [nitial conditions:
e &y(0,y)=0;
e (0,y)= e*yzsin(y) or ¥(0,y)= e*yzcos(y);
@ Boundary conditions: (&, ¥, w) — 0 as y — oc.
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Initial-value problem formulation Mathematical framework
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@ Kinetic energy density e:
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@ Amplification factor G:

_ __e(ta,y)
G(t,a,v) = m
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Initial-value problem formulation Mathematical framework
Measure of the growth

Perturbation energy

@ Kinetic energy density e:

ARG PP A\ o
e(tia,y) = / (1012 + 92 + |w[2)ay
Yd

GNP 2 21002 1~ 12
\a2+w2|/ (155 2+ lo2 + 2117 + lay )y
@ Amplification factor G:

_ __etian)
Gt 7) = e(t=0;a,v)

@ Temporal growth rate r (Lasseigne et al., J. Fluid Mech., 1999):

Kt o) = logle(t; o, 7)|

0
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Energy spectrum

Results

@ The energy spectrum is computed at the asymptotic state (r=const),
since it can widely vary during the transient;
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@ The energy spectrum is computed at the asymptotic state (r=const),
since it can widely vary during the transient;

@ Perturbation energy normalized over the value at { = 0 = G(k);
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Two-dimens case
Three-dimel al case

Energy spectrum
9y sp Combinatior ongitudinal and transversal waves

Energy spectrum for transversal waves
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Transient evolution of multiple three-dimensional waves.
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@ Preliminary study of the behaviour of a collection of 3D waves
seen throughout their energy spectrum at the asymptotic state;

@ The energy of the intermediate range of wavenumbers in the spec-
trum decays with the same exponent observed for fully developed
turbulent flows (—5/3 for 3D, —3 for 2D), where the nonlinear in-
teraction is considered dominant;

@ The spectral power-law scaling of inertial waves is a general dy-
namical property which encompasses the nonlinear interaction;

@ The —5/3 and —3 power-law scaling in the intermediate range

seems to be an intrinsic property of the Navier-Stokes solutions
in 3D and 2D, respectively.

Coming next = Temporal observation window of a large number of
small 3D perturbations injected in a statistical way into the system.
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