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Energy spectrum in fully developed turbulence
Phenomenology of turbulence Kolmogorov 1941:
−5/3 power-law for the energy spectrum over the inertial range;

It is a common criterium for the production of a fully developed
turbulent field to verify such a scaling (e.g. Frisch, 1995; Sreeni-
vasan & Antonia, ARFM, 1997; Kraichnan, Phys. Fluids, 1967).

(left) Evangelinos & Karniadakis, JFM 1999. (right) Champagne, JFM 1978.
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Energy spectrum and linear stability analysis

We consider the state that precedes the onset of instabilities
⇒ the system is stable but subject to small 3D perturbations:

To understand how spectral representation can effectively highlight
the nonlinear interaction among different scales;
To quantify the degree of generality on the value of the exponent of
the inertial range;

The set of small 3D perturbations:
Constitutes a system of multiple spatial and temporal scales;
Includes all the processes of the perturbative Navier-Stokes equa-
tions (linearized convective transport, molecular diffusion, linearized
vortical stretching);
Leaves aside the nonlinear interaction among the different scales;

The perturbative evolution is ruled out by the initial-value prob-
lem associated to the Navier-Stokes linearized formulation.
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Spectral analysis through initial-value problem

We determine the exponent of the inertial range of arbitrary
longitudinal and transversal perturbations acting on a typical
shear flow, i.e. the bluff-body wake:

Base flow approximated through 2D asymptotic Navier-Stokes ex-
pansions (Tordella & Belan, Phys. Fluids, 2003; Tordella & Scar-
soglio, Phys. Lett. A, 2009) ⇒ (U(x , y ;Re),V (x , y ;Re));
Recent set of solutions yielded by the initial-value problem applied
to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math.,
2009; Scarsoglio et al., Phys. Rev. E, 2010);

Variety of the transient linear dynamics ⇒ Understand how the
energy spectrum behaves and compare it with the exponent of
the developed turbulent state:

The difference is large ⇒ quantitative measure of the nonlinear in-
teraction in spectral terms;
The difference is small ⇒ higher degree of universality on the value
of the exponent of the inertial range, not necessarily associated to
the nonlinear interaction.
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Perturbation scheme

Linear three-dimensional perturbative equations in terms of veloc-
ity and vorticity (Criminale & Drazin, Stud. Appl. Math., 1990);

Base flow parametric in x and Re⇒ U(y ; x0,Re);
Laplace-Fourier transform in x and z directions, � complex, 
 real.
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Perturbative equations

Perturbative linearized system:

∂2v̂
∂y2

− (k2 − �2
i + 2i�r�i )v̂ = Γ̂

∂Γ̂

∂t
= (i�r − �i )(

d2U
dy2

v̂ − UΓ̂) +
1

Re
[
∂2Γ̂

∂y2
− (k2 − �2

i + 2i�r�i )Γ̂]

∂!̂y

∂t
= −(i�r − �i )U!̂y − i


dU
dy

v̂ +
1

Re
[
∂2!̂y

∂y2
− (k2 − �2

i + 2i�r�i )!̂y ]

The transversal velocity and vorticity components are v̂ and !̂y

respectively, Γ̂ is defined as Γ̃ = ∂x !̃z − ∂z !̃x .
Initial conditions:

!̂y (0, y) = 0;
v̂(0, y) = e−y2

sin(y) or v̂(0, y) = e−y2
cos(y);

Boundary conditions: (û, v̂ , ŵ)→ 0 as y →∞.
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Perturbation energy

Kinetic energy density e:

e(t ;�, 
) =

∫ +yd

−yd

(∣û∣2 + ∣v̂ ∣2 + ∣ŵ ∣2)dy

=
1

∣�2 + 
2∣

∫ +yd

−yd

(∣
∂v̂
∂y
∣2 + ∣�2 + 
2∣∣v̂ ∣2 + ∣!̂y ∣2)dy

Amplification factor G:

G(t ;�, 
) =
e(t ;�, 
)

e(t = 0;�, 
)

Temporal growth rate r (Lasseigne et al., J. Fluid Mech., 1999):

r(t ;�, 
) =
log∣e(t ;�, 
)∣

2t
, t > 0
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Two-dimensional case
Three-dimensional case
Combination of longitudinal and transversal waves

Results

The energy spectrum is computed at the asymptotic state (r=const),
since it can widely vary during the transient;

Perturbation energy normalized over the value at t = 0⇒ G(k);
Stable configurations (Re = 40)⇒ Far from the turbulent state;
k ∈ [0.05,100], �i = 0, x0 = 10, and � = 0, �/4, �/2;
Symmetric and asymmetric initial conditions.
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k ∈ [0.05,100], �i = 0, x0 = 10, and � = 0, �/4, �/2;
Symmetric and asymmetric initial conditions.
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Energy spectrum for longitudinal waves
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Energy spectrum for transversal waves
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Energy spectrum of a 2D-3D combined perturbation
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Conclusions

Concluding remarks

Preliminary study of the behaviour of a collection of 3D waves
seen throughout their energy spectrum at the asymptotic state;

The energy of the intermediate range of wavenumbers in the spec-
trum decays with the same exponent observed for fully developed
turbulent flows (−5/3 for 3D, −3 for 2D), where the nonlinear in-
teraction is considered dominant;
The spectral power-law scaling of inertial waves is a general dy-
namical property which encompasses the nonlinear interaction;
The −5/3 and −3 power-law scaling in the intermediate range
seems to be an intrinsic property of the Navier-Stokes solutions
in 3D and 2D, respectively.

Coming next⇒ Temporal observation window of a large number of
small 3D perturbations injected in a statistical way into the system.
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