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Pressure and Kinetic energy transport across the cavity mouth in resonating cavities
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Basic properties of the incompressible fluid motion in a rectangular cavity located along one wall of a plane
channel are considered. For Mach numbers of the order of 1 x 1073 and using the incompressible formulation, we
look for observable properties that can be associated with acoustic emission, which is normally observed in this
kind of flow beyond a critical value of Reynolds number. The focus is put on the energy dynamics, in particular
on the accumulation of energy in the cavity which takes place in the form of pressure and kinetic energy. By
increasing the external forcing, we observe that the pressure flow into the cavity increases very rapidly, then
peaks. However, the flow of kinetic energy, which is many orders of magnitude lower than that of the pressure,
slowly but continuously grows. This leads to the pressure—kinetic energy flows ratio reaching an asymptotic state
around the value 1000 for the channel bulk speed Reynolds number. It is interesting to note that beyond this
threshold when the channel flow is highly unsteady—a sort of coarse turbulent flow—a sequence of high and low
pressure spots is seen to depart from the downward cavity step in the statistically averaged field. The set of spots
forms a steady spatial structure, a sort of damped standing wave stretching along the spanwise direction. The
line joining the centers of the spots has an inclination similar to the normal to the fronts of density or pressure
waves, which are observed to propagate from the downstream cavity edge in compressible cavity flows (at Mach
numbers of 1 x 10? to 1 x 10°, larger than those considered here). The wavelength of the standing wave is of the
order of 1/8 the cavity depth and observed at the channel bulk Reynolds number, Re ~ 2900. In this condition,
the measure of the maximum pressure differences in the cavity field shows values of the order of 1 x 107! Pa. We
interpret the presence of this sort of wave as the fingerprint of the noise emission spots which could be observed
in simulations where the full compressible formulation is used. The flow is studied by means of a sequence of
direct numerical simulations in the Reynolds number range 25-2900. This allows the study to span across the
steady laminar regime up to a first coarse turbulent regime. These results are confirmed by the good agreement
with a set of laboratory results obtained at a Reynolds number one order of magnitude larger in a different cavity
geometry [M. Gharib and A. Roshko, J. Fluid Mech. 177, 501 (1987)]. This leaves room for a certain degree of

qualitative universality to be associated with the present findings.
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I. INTRODUCTION

Cavity flows are recirculation zones that can be found in
many natural and engineering contexts. A few instances in
which cavity flows are of significant importance are streaming
blood through the heart (atrial and ventricular cavities), cooling
towers of computers, musical wind instruments, acrodynamics
of road vehicles and trains, and sound or pressure wave
absorption devices where ridges present an increased surface
area compared to a flat profile. In the vast scientific literature
concerning cavity flows, most attention has been paid to
describe the presence of separation regions caused by a sudden
change in geometry, and the concomitant induced vortex
formation, either steady or unsteady. In this regard, among
many others, the reader may consider the work of Le, Moin,
and Kim [1] (in the following referred to as LMK), Yoshizawa
[2,3], and Haigermoser et al. [4]. Rather than focusing on the
details of the vortex dynamics, flow topology, and structure of
the flow pattern that forms inside the cavity, in this work we
consider a different approach based on the determination of
scaling Reynolds number power laws for basic quantities, such
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as the kinetic energy and pressure. To build scaling laws it is
necessary to have access to a data set where the flow field can be
observed when systematically varying the control parameter.
This kind of data set has not yet been made available in the
open literature. One motivation of this study is to partly fill this
need by determining the velocity and pressure incompressible
fields in a typical cavity geometry. A second motivation is
associated with the occurrence of the acoustic resonance of
a cavity, which can be present in the channel bulk when the
Mach number is nearly zero, Ma ~ 1 x 1073, as in a flute or
an organ pipe. A question remains: In this situation, where
in any respect but the acoustic emission the flow is to be
considered incompressible, is it possible to observe within the
incompressible formulation any basic phenomenon that can be
associated with the acoustic resonance?

The cavity is placed within the wall of a plane channel. The
Reynolds number is varied from low values (order of 25) up to
values corresponding to coarse turbulent configurations. In this
way, by means of direct numerical Navier-Stokes simulations,
we span the entire steady laminar regime up to the hypothetical
asymptotic condition represented by statistically steady-state
turbulent condition (which corresponds to a global Reynolds
number based on the bulk velocity of main channel flow of
2900 and to a cavity Reynolds number based on the average
value of the velocity modulus inside the cavity of about
1200).
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Physically, the focus is put on the existence of an asymptotic
limit of the ratio between the flows of the pressure and the
kinetic energy across the cavity mouth with respect to the
Reynolds number. By varying the Reynolds number in the
range [25,2900], a three order of magnitude drop was observed
for this ratio, which, beyond a bulk Reynolds number a little
above 1000, is also seen to approach a decaying asymptotic
state. In the laboratory, the acoustic emissions are observed to
appear in the Reynolds number range [1000,2000].

To summarize, the basic question that prompted this
investigation is: How much energy in the form of pressure can
be accumulated in the cavity—a hollow space within the wall
of the channel—when the intensity of the flow forcing rises?
The forcing here is the streamwise pressure gradient dp/dx.
An increase of the pressure gradient means an increase of
the Reynolds number. What happens when, by increasing the
Reynolds number, the peak value of the pressure flow into the
cavity is surpassed?

For one part of the results obtained here, namely the
momentum across the cavity mouth, a comparison with
laboratory findings is available. We have observed very good
agreement with the set of laboratory results obtained at a bulk
Reynolds number of 24 000 in a cavity placed along the wall
of an axisymmetric body flow [5].

This is an unconfined flow, very different from the channel
flow. This fact leaves room for a certain degree of qualitative
universality to be associated to the present findings. We have
analyzed the cavity flow, with aspect ratio 4, in the steady
laminar regime as well as in one low Reynolds number
turbulent condition (Re = [25,2900]). The Reynolds number
is based on the bulk velocity of the flow in the channel and on
the half channel height /4. In the turbulent case, the mean as
well as the fluctuating transport is analyzed.

The derivation of the energy balance relation and the aims
of this research are presented in Sec. II. A description of the
numerical experiment is given in Sec. III. Results based on the
mean flow can be found in Sec. IV, followed by the fluctuating
component in Sec. V. The concluding remarks are presented
in Sec. VL.

II. PHYSICAL SYSTEM: REPRESENTATION OF THE
TRANSPORT ACROSS THE CAVITY MOUTH

Let us consider the balance equation for the kinetic energy

. Uil;
per unit mass, £ = T:
oE  ou;E 10 i
OE _BwE) _ 1d(pu) o 0
ot 0x; o 0x;

where u; (i = 1,3) is the component of the velocity vector u,
p the pressure, p the density, and u the dynamic viscosity, and

where
0 ou;  ou;
5=t [(i‘Fﬁ)ui], 2)
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are the viscous diffusion and dissipation, respectively.
In steady conditions, or in steady conditions in the mean
condition when the flow is turbulent, the divergence of the
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kinetic energy and pressure flow is balanced by the viscous
diffusion and dissipation,

d(pu; E — pu;)
8x,- -

p@—e). “

In this study we focus on the transport across the mouth of
the cavity seen as the exchange surface where the interaction
of the channel and cavity flow take place. We introduce a
numerical coefficient o to represent the pressure transport as
some factor of the kinetic energy transport:

pv = apvE, Q)

where v indicates the velocity component normal to the cavity
mouth. The factor « is determined also for the turbulent flow
configuration which was considered to verify the existence
of a Reynolds asymptote. In the turbulent case, the transport
relevant to the fluctuation field was also considered. This is
represented by the factor ; that can be determined by using
statistical averages:

(PV) = ap(V'E"). Q)

The ensemble averaging () is used to decompose a quantity
f = F + f’intothe mean F = ( f) and the fluctuation around

it, .

III. NUMERICAL METHOD

The numerical tool used in this study is a mimetic
implementation of the Navier-Stokes equations [6,7]. The
method uses mass and vorticity preserving, in the sense that a
discrete form of the vorticity equation is derived naturally
by the application of the rotation operator to the discrete
momentum equation.

To derive vorticity preserving discretizations, a reformula-
tion of the momentum equation is considered, based on the
identities (see, e.g., Ref. [8])

u-Vu=wxu+ VE, @)
Au=V((V.-u) -V xw, (®)

where @ = V X u denotes vorticity.
The Navier-Stokes equations are then written in the form

ou 1 %
— =-wxu——-V(p+E) - -V xw, 9)
ot o P

V.u=0. (10)

The equations are advanced in time using a fractional step
method of the type used by Kim and Moin [9], combined with
an explicit three step Runge-Kutta scheme [6].

A staggered discretization grid, following the marker and
cell (MAC) approach [10], is employed. The discrete velocity
components are located at the center of the cell faces, while
all the scalar components (pressure and kinetic energy) are
defined at the cell center.

In order to make uniform as much as possible all the
numerical aspects when moving from the steady laminar to
the turbulent, steady in the mean, flow, we used the same
three-dimensional computational domain. This has penalized
the duration of the laminar simulations but has allowed a
smooth numerical transition between the two conditions.
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TABLE I. Collocation points Ny, Ny, N, in x,y,z directions, re-
spectively, used for different bulk Reynolds number (Re) simulations.

Re Ny x Ny, x N,
25-500 320 x 220 x 6
600-1000 329 x 220 x 42
1200-2000 329 x 220 x 74
2900 329 x 343 x 74

Different grid resolutions were used depending on the
Reynolds number, as reported in Table 1. During the simula-
tions, cyclic boundary conditions are applied in the transversal
homogeneous z direction. At the walls, the no slip condition
for the velocity and Neumann condition for the pressure are
imposed. Stretched meshes are applied, to guarantee that the
laminar sublayer is well resolved for all the Reynolds numbers.
Whereas a parabolic profile was imposed at the inlet for
the laminar cases, for the turbulent configuration nonsteady
velocity profiles, obtained with a direct simulation of a periodic
channel flow without cavity, were imposed. At the outlet an
absorbing condition is applied in order to minimize the effects
of the boundary on the interior of the field [11].

As the initial condition, for the laminar flows, the Poiseuille
solution was used. For the turbulent case, the velocity field
obtained by a direct numerical simulation (DNS) was imposed
at the initial time in the channel, while the flow was at rest in
the cavity.

The computational domain considered is that of a channel
with a rectangular cavity on the lower wall; see scheme in
Fig. 1. In Fig. 1 the cavity mouth is highlighted. Profiles of the
flow properties are considered across this area. Note that in
this coordinate system a negative v velocity would be from the
channel center towards the cavity floor, thus into the cavity.

Reynolds numbers in the range Re e [25,2900], based on
the half height of the channel and the bulk velocity, were
considered. The coarse turbulent flow Re = 2900 corresponds
to a wall units Reynolds number of 180 turbulent flow in
the channel. Results presented here were normalized on the
following conditions:

air at 20 °C and 1 bar,

dynamic viscosity 1 = 1.82 x 107> N s m™2,
density p = 1.19 kg m~3,

channel half height # = 0.1 m, and

L, =125Tm,L, =0.314m.

y
X
L
h/2

2h
L

X

FIG. 1. (Color online) Scheme of the channel-cavity domain.
Dimensions are defined with reference to the half channel height
h. The cavity is located at the center. In the computational domain,
L./hisd4mhand L, /hism.
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An ambient pressure p, = 1 atm (101 250 Pa) was taken at
the channel inlet.

IV. PRESSURE AND KINETIC ENERGY TRANSPORT

Despite the fact that most flows in both engineering and na-
ture are turbulent, the laminar cavity flow is still of significant
importance. Howe [12] showed not only that laminar mean
flows can induce oscillations, but that laminar flow resonances
are often more intense. A laminar flow regime is also an im-
portant point from which to consider a wide range of Reynolds
numbers for a study of the dynamics of a flow configuration. In
both laminar and turbulent cavity flows, after separation at the
upstream edge, the mean flow forms a vortex of the dimension
of the cavity depth. Reattachment to the floor of the cavity
depends on its aspect ratio. For a laminar cavity, reattachment
is dependent on the Reynolds number and is typically of the
order of 10 cavity depths downstream of the upstream edge.
For a turbulent cavity this is less dependent on the Reynolds
number and is widely accepted to be around six cavity depths
downstream of the upstream edge [13—15]. The region between
this reattachment point and the upstream edge is dominated by
alarge recirculation. For flows with cavity aspect ratio less than
these values, except for Stokes flows at low Reynolds number,
the cavity is likely to be “open,” in which, after separating from
the leading edge, reattachment takes place near the trailing
edge. The whole cavity is then dominated by a recirculation
region with, for higher Reynolds number, the principal eddy
located close to the downstream edge.

We begin the description of the results by presenting in
Fig. 2 an overview of the flow in the cavity for different
Reynolds numbers: on the left-hand side the pressure field
(p—pa) (in mPa) and the contour level for the spanwise vor-
ticity component are represented, while on right-hand side the
kinetic energy (in J) and velocity streamlines are shown. Since
we want to give a qualitative picture of the flow, contour levels
for the spanwise vorticity component and for the streamlines
are not equally spaced and values for the best representation
were selected. For the lowest Re here considered, 25, the cavity
flow is almost “closed”; i.e., the flow almost reattaches to the
floor of the cavity. On increasing Re, the principal eddy, the
dominant vortical motion in the cavity, moves from the vicinity
of the upstream edge to close to the downstream edge, and the
secondary eddy increases in dimension.

For the turbulent case that we consider here (a turbulent
channel flow with Reynolds numbers Re = 2900 based on
bulk flow, R, = 180 based on wall friction velocity), all the
quantities are averaged over the spanwise direction z and
over a temporal interval of about 8 s, which corresponds to
16 bulk flow time scales (t = 2h/ Upyk). In this situation [see
Fig. 2(j)], the secondary eddy becomes about the same size
as the principal eddy. Differently from the laminar cases, the
pressure field in the cavity is controlled by the presence of
both principal and secondary vortices.

In Fig. 3, a zoomed view of the pressure field close to
the downward cavity step is shown. In the plane of the
visualization, the x-y plane, a trace of a sheet stretched along
the spanwise direction, where a pressure oscillation in space
appears, can be noted. Since the image shows data averaged
in time and space, along the spanwise direction, this sheet
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Re = 50
Re =100
Re = 250
Re = 1000
Re = 2900

FIG. 2. (Color online) Flow visualization inside the cavity. Flows in the Re range [50,2900]. Laminar flows. (a, c, e, g) Pressure field
(p — pa) (in mPa) and contour levels for the spanwise vorticity component, where p, is the pressure at the channel inlet. (b, d, f, h) Kinetic
energy (in J) and velocity streamlines. The averaged turbulent flow at Re = 2900 is represented in (i) distributions of the mean pressure
(p — p.) and mean spanwise vorticity component and (j) mean kinetic energy distribution and mean velocity streamlines. The mean values are
computed by averaging in time over 16 flow time scales and in space over the spanwise direction. The principal eddy tends to a position in the
downstream half of the domain and the secondary eddy grows with Re. See Ref. [16].

can be interpreted as a kind of standing wave that departs
from the high pressure spot visible on the surface of the
downward cavity step. The sheet is backward inclined by
about 26° with respect to main flow in the channel. The
wavelength of the wave is of the order of 1/8 of the cavity
depth (1/32 of the cavity width). In this condition, the measure
of the maximum pressure difference inside the cavity shows a
value of the order of 1 x 10~! Pa, which in a sound wave
could be roughly equivalent to a sound pressure level of
50-60 dB. We interpret the presence of this standing wave
as the fingerprint of the noise emission which exists in flow
configurations close to this one and that cannot be observed in
this study since we are not dealing with the full compressible
model. The interesting point here is, however, the fact that

the incompressible formulation seems capable of capturing a
signature of the acoustic production. It should be noted that the
inclination angle of this sheet is in good agreement with the
inclination of the normal to the contours of constant pressure
visible near the rear wall in the aspect ratio 4 cavity visible in
Fig. 18(b) of the study by Rowley, Colonius, and Basu [17],
which concerns the behavior of self-sustained oscillations in
two-dimensional compressible flow over a rectangular cavity.
In this case, the Mach number is 0.6 and the cavity is in the
wake mode configuration. The wake mode is characterized by a
large-scale vortex shedding with Strouhal number independent
of Mach number. It is interesting to see that the wake mode
oscillation is similar in many ways to that reported by Gharib
and Roshko [5] for incompressible flows with a laminar
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FIG. 3. (Color online) Expanded view of the pressure field in the
downstream edge region at Re = 2900. A sequence of high and low
pressure spots departs from the edge. The Mach number is of the order
of 1 x 1073, The line joining the spot centers is backward inclined by
about —150°, which is close to the inclination of the acoustic wave
observed in the compressible simulations or laboratory observations
with Mach numbers in the range 0.1-0.7 [17]. The average is carried
out in time over 16 flow time scales and in space over the whole
spanwise length of the computational domain.

upstream boundary layer. Also in our case the upstream flow
is laminar and, in fact, our velocity fields have very good
agreement with the available data by Gharib and Roshko [5],
which are presented along the cavity mouth. This is explained
below and shown later in Fig. 7.

Figure 4 shows the dimensioned streamwise pressure
distribution in the channel and cavity for four Reynolds
numbers. The profiles are taken along the bottom wall of
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FIG. 4. Dimensioned streamwise pressure profiles at the level of
the channel wall and cavity mouth for Re = 100, 500, 1000, and
2000. A constant pressure gradient is seen far from the cavity. Closer
to the cavity this constant gradient is subject to a perturbation, with
an increase in pressure just downstream of the separation point, a
low over the location of the principal eddy for the higher Reynolds
number cases, and a peak at the location of the downstream edge.
The ordinate represents the pressure difference with respect to the
ambient.

PHYSICAL REVIEW E 87, 013013 (2013)

TABLEIIL. The resulting bulk velocity and pressure gradient in the
channel, for different Reynolds numbers. Data built on a flow domain
with dimensions L, = 1.257 m, h = 0.1 m, and L, = 0.314 m; see
the scheme in Fig. 1.

Ubuix Pressure gradient
(mm/s) Re (mPa/m)
3.8 25 —0.020865
7.6 50 —0.041730
15.3 100 —0.083461
22.9 150 —0.121591
30.6 200 —0.166922
38.2 250 —0.208652
459 300 —0.250383
61.2 400 —0.333844
76.5 500 —0.417305
122.3 800 —0.667687
152.9 1000 —0.834609
183.5 1200 —1.001531
229.4 1500 —1.251914
305.8 2000 —1.669218
443.4 2900 —9.826689
1681.9 11000 —77.423917

the channel and, in correspondence with the cavity, along
the cavity mouth (the location of the cavity is shown in the
diagram). It can be seen that as Re is increased, and when
considering a given fixed flow geometry, the pressure gradient
required to overcome losses at the channel wall is greater
(see Table II). In the region of the cavity upstream edge, the
pressure drops suddenly and then increases downstream of the
separation point. Moving downstream the channel pressure
gradient is perturbed by the flow structures within the cavity,
more evidently for the cases Re = 1000 and Re = 2000 where
a dip in the profile can be noted close to the downstream edge.
At the downstream edge there is a sharp peak in the profile at
the point where the flow stagnates.

By observing the flow properties at the cavity mouth, it can
be seen from the profiles of the wall normal v velocity in Fig. 5
that there is a large area of low magnitude flow, mostly outflow,
followed by a confined region with a higher magnitude inward
velocity. For the laminar cases 500 < Re < 2000 this large
area is an outflow, whereas for the turbulent case the flow
direction and magnitude oscillate, with a peak inflow flanked
by two areas of outflow. For all these Reynolds numbers there
then follows a high magnitude inflow into the cavity in the
vicinity of the downstream edge. In the case of Re = 100,
which corresponds to a partially open cavity case, the behavior
is different. An outflow is apparent close to both the edges, with
a large area of low velocity inflow between them. For details,
see the inset in Fig. 5.

The mean kinetic energy per unit volume along the cavity
mouth is shown in Fig. 6. This quantity is dominated by
the streamwise velocity component, which is one order of
magnitude greater than the wall normal velocity, with the
spanwise component null in the laminar flow and on average
in the turbulent flow.

It should be noted that these results agree with laboratory
findings [5] related to a turbulent cavity flow with a different
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FIG. 5. Dimensioned v wall normal velocity across the mouth
of the cavity. A large area of velocity outflow is followed by a
more confined region of relatively high velocity inflow close to the
downstream edge.

geometry and a Reynolds number about 10 times larger, a thing
which highlights a good level of generality for our results (see
Fig. 7). In particular, the experimental investigation concerned
a flow over an axisymmetric cavity. In this work it was shown
that self-sustained, periodic oscillations of the cavity shear
layer are associated with a low cavity drag and can regulate
the external mean shear layer to fix the stagnation point at the
downstream corner.

We now turn our attention to forming the products which
make up the transport terms. The product of the pressure and
wall normal v velocity at the cavity mouth is depicted in
Fig. 8(a) for cases Re = 100-2900. The profile very much
takes its form from the cavity mouth velocity profile found

—_

— T T
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4—& Re=2000
¥—¥ Re=1000
A—A Re=500
Bl Re=100
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o
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kinetic energy, laminar cases(10'3J/m3)

kinetic energy, turbulent cases(10'3J/m3)
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0.05 0.1 0.15
distance from cavity upstream edge (m)

FIG. 6. Mean kinetic energy E per unit volume across the mouth
of the cavity. E increases with Re with a scaling exponent which
has been estimated as 1.4 for the laminar cases. When passing to the
turbulent case, the mean kinetic energy, defined as (E) = (p“5%), is
considered (diamonds). In this case the maximum (E) is an order of
magnitude larger for a relatively small increment in Reynolds number,
owing largely to the greater streamwise velocity in the region near
the cavity mouth.
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in Fig. 5, with a low magnitude transport upstream and more
confined high magnitude close to the downstream edge.

In Fig. 8(b) the kinetic energy transport along the mouth of
the cavity is depicted. Most of the energy transfer takes place
in the downstream half of the cavity. For Re > 500, it can
be seen that the greatest magnitude transport occurs close to
the downstream edge for the laminar cases. The peak in kinetic
energy transport in the turbulent case can also be found in the
same region. However, unlike in Fig. 5, where, passing from
Re = 2000 to 2900, an increase of three times the maximum
pressure transport is observed, a change in the ordinate scale
is required for the energy transport case. Here, in fact, the
maximum local transport in the turbulent case is almost two
orders of magnitude greater than that in the highest Reynolds
number laminar case.

In Fig. 9 the averages of the dimensioned pressure and
kinetic energy transport across the cavity mouth are plotted as
functions of Re. In our reference system (see Fig. 1), both the
flows are negative, since the mean energy and pressure flow
into the cavity. In Fig. 9, however, we plot the modulus of the
flow. The kinetic energy transport can be seen to continually
increase in magnitude with Re; indeed as Re is doubled the
transport is more than doubled, which is a direct consequence
of the increased kinetic energy entrained into the cavity mouth
area as seen in the previous plots (Fig. 6). As can be seen in
the figure, the energy flow grows according to two different
interpolation curves. Up to Re = 1000, the growth scaling is
that of a power law with an exponent close to 2. Beyond, the
interpolation is logarithmic. The pressure transport reaches
a maximum around Re = 1000, according to a logarithmic
law, and is then seen to reduce if Re is increased further,
according to a polynomial law. Figure 8(a) shows that the
maximum local strength of the pressure transport increases
with Re. Despite this it can be seen in Fig. 9 that the net
transport of pressure remains relatively constant getting close
to Re ~ 1000. Increasing from this value, the rise in pressure
outflow from the cavity is evidently greater than the increase in
the inflow. Our interpretation is that in this range the acoustic
emission appears. Since the cavity flow is a very confined
flow, inside the cavity the development of many small scales
is blocked. This reduces the dissipation action, and, to reach
a steady state, an emission of energy in the form of acoustic
waves is thus necessary. By considering now the ratio between
the two mean transports for both the laminar and turbulent
mean flow,

Ol=%, 062900=%, (11)
which is shown as a function of Re in Fig. 10; one can see that
for increasing Re this ratio tends to an asymptotic limit. The
asymptotic ratio is more than four orders of magnitude lower
than that measured at the very low bulk channel Reynolds
number of 50 (Reayiy below 10). Moreover, the asymptote is
reached where Re exceeds 1000 and it is beyond this value of
Re that the first instances of unsteady flow can be expected.
On incrementing Re further (values beyond 2000), the flow
will become transitional, where pockets of agitated flow, or
turbulent structures, will begin to appear (see, for example,
Fig. 11). It is at this stage that the cavity flow starts to emit
audible noise since, as discussed by Howe [ 18], these structures
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FIG. 7. Comparison of the streamwise and crosswise momentum along the cavity mouth with the laboratory results by Gharib and Roshko [5]
obtained for a cavity placed along a boundary layer in cylindrical symmetry (Re = 24 000).

impinge on the downstream edge, causing a time disturbance
to the pressure field. When the flow becomes turbulent the
generation of the structures is more frequent and they usually
have more energy. As a consequence, the pressure disturbance
is greater. This set of phenomena—unsteadiness, transition,
and turbulence—appears inside the asymptote regime here
described.

In order to be able to better understand which is the
Reynolds number seen by the flow in the cavity, a cavity
Reynolds number, Rec.iy, has been defined, considering
the mean parameters seen by the cavity. The mean velocity
modulus in the cavity volume, |u|, has been computed for each
case, along with the mean dimension of the cavity, leaiy =
(Iength 4 depth)/2 = 2.5k, so that the cavity Reynolds num-
ber is defined as Recavity = [ullcavity/v. Table III presents the
new range of Reynolds numbers alongside the global Re of the
channel flow.
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Visible from the table is the jump in values of the new
Recaviy Tange. On moving from Re = 2000 to Re = 2900,
i.e., incrementing Re by one half, we see almost an order of
magnitude increase in Recayiy. In the range 169 < Recayviy <
1176 the flow moves from the laminar to the turbulent regime
(see Fig. 11). Thus considering that the cavity flow is a much
confined configuration, where three walls act to suppress un-
steadiness, an intermediate value in this range can be expected
to be an approximate representation of the critical Reynolds
number for the onset of a multiscale highly unsteady flow (a
sort of very coarse turbulent flow). In laminar unsteady and
turbulent situations, the mean flow energizes the fluctuating
part. Thus where the mean flow is intense and fluctuations
are present, as in this study where the flow region is close
to the cavity trailing edge, the fluctuating structures acquire
a lot of energy. See the experimental investigation by Gharib
and Roshko [5] on the flow over an axisymmetric cavity that
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energy transport, turbulent case(1 0°J/m m/s)
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FIG. 8. (a) Dimensioned pressure transport and (b) kinetic energy transport profiles across the cavity mouth for the range 100 < Re < 2900
(all the flows are steady laminar, but Re = 2900 is the turbulent case). The inset omits the turbulent case. The pressure transport profiles
resemble those of the velocity, where a low magnitude large area outflow is followed by a confined area of high magnitude inflow. Passing
from the laminar to the turbulent case (diamond symbols), the local energy flow increases by two orders of magnitude.
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FIG. 9. Dimensioned absolute value of the pressure and kinetic
energy transport across the cavity mouth versus Re. Within the
adopted reference system, both the kinetic energy and pressure
transports are always negative, i.e., into the cavity. Beyond Re ~ 1000
one can observe a change in regime, i.e., a polynomial decay for the
pressure flow and a logarithmic growth for the energy flow. This
produces an asymptotic exponential decay for the ratio of these
quantities, as can be seen in Fig. 10. The mean energy (squares)
and pressure (circles) transport before and after the Reynolds value
of 1000 have been interpolated and are shown here. These two
sets of curves were computed through the present direct numerical
simulations by spanning the Reynolds number range [50, 2900].
For the energy transport we obtained [3.1 x 1073 Re!*] (dotted
curve) and [—696 4+ 1031InRe] (dot-dashed curve); and for the
pressure transport, [—0.65 + 0.211nRe] (solid curve) and [0.69 +
2.8 x 10™*Re — 1.5 x 10~7Re?] (dashed curve).
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FIG. 11. (Color online) Three-dimensional visualization of the
streamwise velocity component inside the turbulent channel-cavity
flow. Bulk Reynolds number, Re = 2900. Reynolds number based on
the averaged cavity dimensions and velocity modulus inside the cav-
ity, Recaviy ~ 1200. The lower velocity intensity and comparatively
narrower range of scales inside the cavity should be noticed.

shows self-sustained, periodic oscillations of the cavity shear
layer. Self-sustaining oscillations of high-Reynolds-number
incompressible shear layers and jets incident on edges and
corners are very common. These oscillations are frequently
sources of narrow-band sound and are usually attributed to
the formation of discrete vortices whose interactions with the
edge or corner produce impulsive pressures that lead to the
formation of new vorticity and complete a feedback cycle of
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FIG. 10. The ratio a of pressure to kinetic energy flows initially decreases with Re™!’, then sets to an exponential asymptote showing
a tendency to reach the same state for flows of laminar and turbulent regimes. Indeed in the Reynolds number range where the asymptote is
reached, the first instances of unsteady flow, instability, and acoustic emission should be expected (see, e.g., Refs. [12,18,19]).
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TABLE III. Global channel Reynolds number (Re) versus cavity
local Reynolds number (Recqyiy ), based on the arithmetic mean of the
cavity dimensions and on the average value of the velocity modulus
inside the cavity.

Bulk channel velocity Cavity velocity

Re (mm/s) Recavily (mm/ S)
100 15.3 16.0 0.962
250 38.2 325 1.956
1000 152.9 100.0 5.996
2000 305.8 169.0 10.120
2900 443.4 1176.0 70.560

operation. See, for instance, the works by Howe [12,18,20]
where the influence of the mean shear on unsteady aperture
flow, with self-sustained cavity oscillations, is discussed.

It should be noted that the set of laminar solutions produced
in this work, Recqyity from 8 to 169, could also be used as basic
steady flow for numerical perturbative studies of the cavity
flow stability, in particular for the initial value problem of
three-dimensional instability waves introduced into systems
represented by the linearized Navier-Stokes flow field [19,
21-23]. The cavity flow is a recirculating flow and, as such,
the standard perturbative scheme used for near parallel flow
cannot be applied. However, due to the homogeneity in the
streamwise and spanwise directions of the Poiseuille channel
flow, perturbations in the form of longitudinal and transversal
waves can be imposed to the flow above the cavity mouth, and,
through it, conveyed to the cavity.

V. FLUCTUATING PRESSURE AND KINETIC
ENERGY TRANSPORT

In both laminar and turbulent flows, separation, caused by
a sudden change in geometry or a strong adverse pressure
gradient, induces vortex formation, either steady or unsteady.
The energy balance changes dramatically in these configu-
rations when compared to flows which are predominantly
unidirectional, such as the plane channel or boundary layer.
Observing the kinetic energy transport rate statistics of
turbulent wall bounded flows, it can be seen that the dominant
terms are production and viscous dissipation, followed by
the viscous diffusion and the turbulent transport. This differs
in recirculation zones. For turbulent flows such as those
downstream of back steps, Le et al. [1] and Yoshizawa [2,3]
highlighted a redistribution of energy. Although still domi-
nated by kinetic energy production and viscous dissipation,
there is a rearrangement of the relative importance between
the divergence of the pressure transport rate and the kinetic
energy transport rate. Specifically the pressure transport rate
represents a greater proportion of the kinetic energy transport.
This was highlighted by Yoshizawa [3] on analyzing the DNS
back-step flow of LMK [1] and trailing edge flows of Yao
et al. [24]. The study of LMK [1] considered the boundary
layer over a back step and thus a flow which is initially
unidirectional before separating at a discontinuity in the
flow geometry. Interestingly when analyzing the recirculating
region downstream of the back step they note similarities
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FIG. 12. Schemes of the interaction of turbulent regions with
high (E'1) and low (E2) kinetic energy content: (left) flow within
and just outside the cavity in a volume of same extension and (right)
flow across the shearless homogeneous isotropic turbulence mixing.
For the turbulent cavity we measured E£1/E2 = 15.6, whereas, for
the shearless mixing, tests have been performed in the range for
10 < E1/E2 < 106 (see Refs. [25,26]).

between the energy distribution found in the plane turbulent
mixing layer.

Now turning our attention to the turbulent transport of
energy and pressure across the cavity mouth, we can consider
the cavity mouth as a plane surface between two regions
of turbulent flow with differing energy contents. The flow
in the channel just above the cavity mouth contains in fact
more kinetic energy than the confined flow within the cavity
(see Fig. 11). The ratio of transports between two turbulent
fields with a significantly different content of kinetic energy
was studied in a more fundamental configuration by Tordella
etal. [25,26], where the interaction between two homogeneous
isotropic turbulent fields (shearless mixing), differing in
energy content, correlation length, or both, was investigated.

This configuration represents a very simple non homoge-
neous turbulent flow where, owing to the lack of the mean
shear, the turbulent energy production is absent. Under this
condition a relation between the pressure transport and the
kinetic energy transport for varying energy ratios across the
mixing has been found. For this turbulent mixing at values
of the Taylor microscale Reynolds number of 45, 75, and
150, the coefficient «; has been determined to be close to
0.37 for the range of energy ratios E1/E2 € [10,10°], and
thus the pressure fluctuation transport is not dominated by the
fluctuation kinetic energy transport.

Now comparing the previous result and that related to the
turbulent cavity flow, where we have determined the energy
ratio of the flow outside the cavity (region above the cavity
mouth which has the same volume of the cavity; see Fig. 12)
over that within, E1/E2 = 15.39, in the range of Re,Recayiyy
here considered, and «; has been determined to have a value
of 0.58. It can be seen that also in the cavity flow case the
fluctuation pressure transport is lower, albeit of the same
order, than the fluctuation kinetic energy transport. This is
aremarkably different behavior from that observed at the level
of mean quantities. The turbulent transport appears to be less
dependent on the Reynolds number and, also, not so highly
dependent on the presence of a mean shear flow, as one would
expect. However, the fluctuation pressure transport represents
a slightly greater proportion of the fluctuation kinetic energy
transport in the sheared cavity flow than in the shearless
mixing.
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VI. CONCLUSIONS

In this study, we considered the dynamics of very low Mach
number cavity flows (Ma ~ 1.0 x 1073), as observed from the
point of view of the incompressible formulation. It is well
known that, in this condition, cavity flows can emit acoustic
waves and behave as a source of noise. On the one hand,
to obtain information on the detail of the acoustic emission,
one must consider the compressible formulation. On the other
hand, if the acoustic emission was not present, nobody would
consider adopting the compressible formulation to describe
flows with a Mach number many orders of magnitude lower
than 1.

In this work, we consider the cavity as an energy collector.
Energy per unit volume can be stored in the cavity volume
in two forms: kinetic energy and pressure. The energy and
pressure flows take place across the cavity mouth.

We tried to answer the following question. Working inside
the incompressible framework, is there any phenomenon that
could be reasonably associated with pressure wave emission?
The approach we used is very simple and basic. We considered
a sequence of steady flow conditions rising from the low
Reynolds number of the flow that feeds kinetic energy into the
cavity. The sequence gets beyond the Reynolds number where
the unsteady bifurcation is observed. It should be noted that
the acoustic emission is usually described in association with
the unsteady bifurcation. However, accurate sound emission
measurements parametrized on a dense Reynolds number
variation have not yet been reported in the literature. Thus,
it is not yet known which is the Reynolds number threshold
for sound emission.

We considered 14 laminar flow configurations and 1
turbulent flow configurations inside a plane channel with a
cavity on one wall. The velocity, pressure, and kinetic energy
properties along the mouth of the cavity were analyzed. It
was seen that the kinetic energy along the cavity mouth
scales with the bulk Reynolds number to the power of 1.4.
The kinetic energy and pressure transport across the cavity
mouth increase with Reynolds number up to the value 1000.
Beyond this value a change of regime occurs, where the
pressure flow decreases. The ratio between the pressure
and energy flows always decreases with the channel bulk
Reynolds number Re and, in the second regime, exhibits an
asymptotic behavior represented by an exponential function
with a negative exponent proportional to the Reynolds number.

Another observation is that, under the condition where the
emission is surely present—a coarse turbulent flow configu-
ration (Ry, ~ 6.0 x 103, bulk Reynolds number in terms of
the channel height)—a kind of plane standing pressure wave
is generated near the backward facing step of the cavity. The
wave is observed in the spatially and temporally averaged
pressure field and is damped spatially. It has a wavelength of
the order of 1/30 of the cavity length, and on the basis of
an estimate of the amplitude of the root mean square of its
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damped fluctuation, a sound pressure level of about 60 dB
would correspond.

On the contrary of what is generally observed for the
turbulent transport, where, in near parallel flows, the pressure
flow rate is dominated by the kinetic energy one, and, in
recirculating regions, becomes of the same order, across the
laminar or the turbulent cavity mouth, the pressure flow
dominates by many orders the kinetic energy flow. However,
in the near asymptotic condition we could observe, a recovery
of the kinetic energy flow of about 700 times is seen.

In the turbulent case we observed, the pressure transport
due to fluctuations is instead of the same order as that of the
kinetic energy. In fact, the fluctuation pressure transport was
found to be 0.58 the value of the kinetic energy transport, a
figure which is not far from the value of 0.37 shown by the
shear-free turbulent mixing.

A last outcome of this study is the accurate set of laminar
solutions produced in the range of the Reynolds number based
on the mean flow velocity inside the cavity, Recaviy. By varying
Re from the low value, Re = 25, to the value where the onset
for the first instability can be expected, Re ~ 2000, we see
that Recayiy varies from 8 to 169. These numerical steady
solutions can represent the basic flow for perturbation studies
of the cavity flow stability. In particular, they can be used for
the analysis of the initial value problem of three-dimensional
perturbation waves introduced into the flow field described by
the linearized Navier-Stokes model.

The numerical experiment is carried out taking into con-
sideration physical dimensions that in principle can be easily
reproduced in the laboratory. To promote a future comparison
with laboratory data, we have therefore described all the results
in terms of dimensioned quantities.

One last observation is that nowadays, compressible simu-
lations at very small Mach number values, found in common
nonaeronautical applications (that is, Ma ~ 1073), become
feasible with the massively parallel machines, of course at
the cost of translating the numerical codes to the highly
distributed kind of parallelization. In this way, the details of the
energy release by pressure waves could be obtained: one could
measure the wavelength, verify the wavelength-frequency
relationships, observe the evolution of the shape of the wave
front, and determine the amount of energy released by pressure
waves. And, very importantly, leaving aside the generation and
propagation of the acoustic wave, one could verify which part
of the physics of the system remains the same as seen in the
incompressible formulation.
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