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Asymptotic Expansions
for Two Dimensional Symmetrical Laminar Wakes

A non parallel extension of the Gaussian asymptotic representation of the two dimensional laminar incompressible far
wake past a symmetrical body is presented. Under the one and only condition that the middle and far field be governed
by the thin shear layer theory that keeps the complete non linearity of the equation of motion, we determined a solution
in terms of an infinite power series of the streamwise space variable with fractional negative exponents. The general n-th
order term has been analytically established.
The behaviour of these expansions inserted into the Navier-Stokes equations was analyzed to verify the consistency of the
approximation in the intermediate region of the wake. At the third order the correction due to pressure variations identi-
cally vanishes while the contribution of the longitudinal diffusion is still two-three order of magnitude smaller than that of
the transversal diffusion, depending on the Reynolds number.
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1. Introduction

For the first time determined up to the n-th order term, an asymptotic expansion is here presented as representation of
the steady laminar two dimensional wake flow. Besides the far field, it is inclusive of the middle region –– a useful tool as
basic flow in studies concerning the role of the non parallelism on the wake instability. The position adopted is that the
model of Prandtl’s boundary layer with a zero pressure gradient does describe the middle and far wake field but it is
unable to describe the near one. The representations are looked for the steady solutions belonging to the Reynolds num-
ber range 20 < Re < Recr, where Recr � 40 is the critical value for the onset of the first wake instability, and for the
laminar steady, but unstable, solutions up to the second critical Re. The asymptotic expansion is built over all the
negative powers of the longitudinal coordinate x that are integer multiple of 1=2. The coefficients describe the cross-
stream distribution of momentum and are function of the lateral coordinate y transformed, according to the quasi-similar-
ity hypothesis, to h ¼ x�1=2y. While the first order term has an exponential lateral decay the terms of order higher than
the second have necessarily an algebraic decay of the kind h�3. For both x; y ! 1 our solution shows a lateral
exponential decay as it must be because in this situation, i.e. inside the self-similar far wake, the Prandtl b.l. equa-
tions are very well approximated at any value of the control parameter by the Oseen linear form that implies: i ––
that jU � uj � U, ii –– that the component of acceleration in the x-direction be approximated by U @u=@x, while that
in the cross-stream direction be negligible (U; u are respectively the upstream velocity and the streamwise velocity
component). For finite values of x, inside the middle wake, there is a fast algebraic lateral decay. In this region the
Oseen approximation does not hold and the rapid decay –– not rigorously demonstrable even in the far wake region,
that explains why it is used as –– and called –– a principle, see STEWARTSON ([17], p. 177), CHANG ([7], p. 834), KIDA

([13], p. 949) –– must not be expected. Going upstream this property is little by little lost due to the continuous
transition from a nearly linear convection to a full non linear one.

The literature presents analytical solutions relevant to the far wake. Apart the famous Gaussian asymptotic repre-
sentation by TOLLMIEN [18], obtained after linearization of the Prandtl equations by means of the Oseen approximation,
other higher order expansions, however truncated without remainder determination, were found in times past by GOLD-

STEIN [10], STEWARTSON [17], CHANG [7] and more recently by KIDA [13]. However all these authors worked under the Oseen
successive approximations that linearize the equation of motion while bringing it to the structure of the linear heat
conduction equation in a plane solid, that, as well known, foresees asymptotic exponential decays. These expansions
contain logarithmic terms to remain adherent to the Oseen approximation and thus to keep the exponential nature of the
lateral decay at the higher orders of accuracy. See STEWARTSON ([17], cf. p. 177) that clearly describes the approach
characterizing these studies and presents the chain of hypothesis used, namely: i –– the difference between the linearized
and the non linearized parts of the convection, called F ðx; yÞ, is supposed exponentially small for large y –– we demon-
strated that this is not true from the third order of accuracy on (Appendices A and B) –– and let play the role of inhomo-
geneous part of the equation of motion that in such a way becomes linear, ii –– the function u0 ¼ fðx0; yÞ, the initial wake
profile, is the same supposed exponentially small at large y (these two assumptions are very strong because it is impossi-
ble to support them on experimental evidences, either of laboratory or numerical nature), iii –– among all the terms of the
solution coming from the contribution of F ðx; yÞ only the ones that dominate at large x were considered (cf. above eq.
2.10, p. 177) meaning that only the far portion of the wake is going to be described. We used none of these limitations.
Our solution results an extension, however not antithetical, with regard to the expansions found by the authors above.
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Our expansions contemplate the phenomenon of entrainment of ambient fluid from the sides that wakes, likewise
jets, boundary and free shear layers, are experiencing as a consequence of the combination of momentum conservation
and energy dissipation. The amount of fluid being transported by the wake increases downstream to match asymptoti-
cally the amount transported at infinity upstream. As we show in Appendix B, as y goes to 1 every term of the u
series (for n > 0) vanishes, while every term of the v series (for n � 2) goes to a constant value (with sign towards the
wake center) making v vanishing as x�3=2 when x ! 1. Thus when y is large but x is finite, the streamwise compo-
nent of the velocity matches the upstream velocity and the lateral component assumes a constant value that in its turn
will go to zero when x ! 1. This pattern agrees with the far field description in BATCHELOR’s monography ([4], par.
5.12), where a uniform stream is superposed on a source, centered on the body generating the wake, compensating for
the mass flux deficit in the wake.

A posteriori we verified the internal coherency of the model using the Navier-Stokes equations, introducing the
pressure gradient and longitudinal divergence of the viscous stress. We have determined that, at worst at the fourth
order of accuracy, the thin shear layer approximation could ask for corrections to be used getting close to the near
wake and at small Reynolds numbers. This is so since at the third order the longitudinal diffusion term is more than
two orders of magnitude lower than the leading terms and the pressure gradient vanishes identically.

This solution was applied to compute the velocity profiles in the wake of the circular cylinder, the more fundamental
field among flows past a bluff body. The experimental results available in literature, up to the first critical Reynolds num-
ber for the onset of instability, are not very abundant as far wake velocity profiles are looked for and not in high mutual
agreement: the more complete experiments are the ones by KOVÁSZNAY [14] and by NISHIOKA and SATO [15]. We compared
the behaviour of our velocity profiles to the first group of results. In § 2 we present the basic hypotheses adopted. In § 3 the
determination of the analytical general solution is fully described, together with the discussion of the behaviour of the
expansion as jhj ! 1 and an examination of its convergence properties. In § 4 we discuss the limits that the thin shear
layer approximation imposes on these results by direct comparison with the behaviour of the present analytical proce-
dure as applied on the Navier-Stokes equations. In § 5 the solution found for the circular cylinder wake is presented.
Final comments and summary of the work are given in § 6. Details concerning the analytical procedure of integration of
the equations of motion here adopted and particular properties of the expansion are illustrated in the Appendices.

2. Basic hypothesis

We assume that the two dimensional incompressible laminar stationary wake flow is described by Prandtl’s adimen-
sional boundary-layer equations

u @xuþ v @yu ¼ R�1 @2
yu ; ð1Þ

@xuþ @yv ¼ 0 ð2Þ

where the pressure gradient, imposed by the outer flow, is equal to zero. The domain considered is composed by the
intermediate and far wake

d < x < 1 ; �1 < y < 1 ð3Þ

where x is the standard longitudinal coordinate –– with the origin placed on the centre of the body generating the
wake –– and the function d ¼ dðRÞ > 0 is the distance from the center of the body beyond which the thin shear layer
model becomes relevant. It is a function decreasing with R as it will be shown in the following, see § 5. Either this
arbitrary origin or the near wake, that includes the symmetrical adherent vortices, fall outside the domain of validity
of the equations of motion written under the thin shear layer approximation. The adimensionalization adopted is based
on the characteristic length of the flow (the length D of the body generating the wake) and the velocity of the free
stream U . The boundary conditions are

lim
jyj!1

uðx; yÞ ¼ 1 ; x � d ; ð4Þ

vðx; 0Þ ¼ @yuðx; 0Þ ¼ 0 ; x � d ; ð5Þ
uðx*; yÞ ¼ u*ðyÞ ; x* > d : ð6Þ

The profile u
*
ðyÞ is placed in the intermediate field and it is of experimental nature, either the result of a numerical

simulation or of a laboratory measurement. Let us postpone until § 4 the analysis of the limits of this approximation;
and introduce the virtual reference system ðxv; yÞ ¼ ðx� d; yÞ, whose origin is Ov 
 ðd; 0Þ in the old reference system. It
has to be determined a fortiori as the fictitious origin, which leads to the correct far field solution based on a self-
similar first order asymptotic expansion solution. Then, we introduce the quasi-similarity transformation for the inde-
pendent variables:

x ¼ xv ; @xv
¼ @x � 1

2 x�1h @h ;

h ¼ x�1=2
v y ; @y ¼ x�1=2 @h :

ð7Þ
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Renaming x ! x, in what follows the virtual coordinates are ðx; yÞ and the coordinates centered on the cylinder are
ðxþ d; yÞ. The transformed equation of momentum becomes

u @xu� 1
2 x

�1hu @huþ x�1=2v @hu ¼ 1

R
x�1 @2

hu : ð8Þ

The asymptotic expansion hypothesis for the velocities is now introduced:

u ¼
P1
n¼0

x�n=2fnðhÞ ¼ f0ðhÞ þ x�1=2f1ðhÞ þ x�1f2ðhÞ þ . . . ;

v ¼
P1
n¼0

x�ðnþ1Þ=2cnðhÞ ¼ x�1=2c0ðhÞ þ x�1c1ðhÞ þ . . .

ð9Þ

where the kind of power operating on x is determined by the condition that the total momentum per unit time across
any section x must be constant (Schlichting [16], p. 177). The series may converge for x > 1, i.e. for distances greater
than dþ 1 from the center of the body. The boundary condition (4) yields directly f0 ¼ 1.

The determination of the position of the virtual origin should be accomplished by adjusting the first order solu-
tion to an accurate far field numerical or experimental profile. We used numerical profiles obtained through an adap-
tive discretization of the stationary and incompressible Navier-Stokes equations by stabilized Finite Element Methods
(BERRONE [5, 6]). For the approximated expansion solution given in § 5 the domain of the reference numerical solution
reached the far field region (180 diameters behind the circular cylinder), while the global true error indicator for the
reference numerical simulation, measured in the norm, was fixed at 1.5%. The relationship between cn and fn coming
from the continuity equation is the following:

cn ¼ h

2
fn þ

n� 1

2
Fn ð10Þ

where FnðhÞ is an odd function defined as

FnðhÞ ¼
Ðh
0

fnðzÞ dz : ð11Þ

Given that f0 ¼ 1, relation (10) yields c0 ¼ 0.
The general equation for fn is now obtained by substituting (9) in eq. (8) and by equating coefficients of like

powers of x:

Lnfn 
 R�1f00
n þ 1

2 h f0
n þ 1

2 nfn ¼ Tn ; ð12Þ

where the primes denote the h-derivatives. Here T0 ¼ T1 ¼ 0, T2 ¼ �1
2 f2

1, and for n � 3

Tn ¼ � n

4

Pn�1
i¼1

fifn�i þ
Pn�2
i¼1

� h

2
f0

ifn�i þ f0
icn�i

� �
ð13Þ

(see Appendix A). These are linear second order ODE’s and constitute an infinite succession. The linearity is due to
the fact that the function TnðhÞ, that keeps the same properties of smoothness of u and v, contains the products of
fi; ci and their derivatives, where i ¼ 1; . . . ; n� 1. The right hand side term of (12) is never a function of fn and at
the same time it is the only term where the non linearity of the system is confined.

3. Determination of the solution

The solution of (12) is equal to the sum of the general solution jn of its homogeneous associated equation and of a
particular solution f̂fn.

The homogeneous equation Lnjn ¼ 0 associated to (12) has the solution, obtained by means of standard techniques,

jn ¼ e�ðR=4Þh2

C1nh1F1 1� n

2
;
3

2
; ðR=4Þ h2

� �
þ C2n1F1

1� n

2
;
1

2
; ðR=4Þ h2

� �� �
; ð14Þ

where 1F1 is the confluent hypergeometric function (see Kamke [11], pp. 427, 473, 475). The accessory conditions
require fn and jn even. Thus, C1n ¼ 0 must be imposed.

For the inhomogeneous equation

R�1f̂f00
n þ 1

2 h f̂f0
n þ 1

2 n f̂fn ¼ Tn ð15Þ

the determination of a particular solution is obtained through the substitution

f̂fnðhÞ ¼ tnðhÞ @n�1
h gðhÞ ð16Þ
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(n > 0) where gðhÞ ¼ e�ðR=4Þ h2
is a transformation function. The transformed equation one gets is

t00n þ Pnt
0
n ¼ Qn ; ð17Þ

where the Pn are known polynomials (see Appendix A) and

QnðhÞ ¼ R
TnðhÞ

@n�1
h gðhÞ : ð18Þ

Eq. (17) is solved for t0, getting

t0nðhÞ ¼ e�SnðhÞ ½Ct0 þ
Ð

QnðhÞ eSnðhÞ dh� ð19Þ

where the function

SnðhÞ ¼
Ð

PnðhÞ dh ð20Þ

may be rewritten in a simple form, as shown in A (the possible singularities of the integrands are discussed at page 5).
The integration constant Ct0 can be determined by considering the asymptotic behaviour of Sn: it is easy to see

that Sn ! �1 as h ! 1 (see Appendix A). Thus, the solution (19) contains a singular term Ct0 e
�SnðhÞ, that must be

removed by setting Ct0 ¼ 0. Function tn is obtained by integration of eq. (19):

tnðhÞ ¼
Ð

t0nðhÞ dh þ Ct : ð21Þ

The new constant Ct can be determined reasoning on the parity of fn and successive transformations, it can be shown
that the choice Ct ¼ 0 leads always to a f̂fn even. Since we are considering the determination of a particular solution of
eq. (12), this choice gives no loss of generality, neither spoils the correct satisfaction of the boundary condition.

Then, using eq. (16) and the relations

@n�1
h gðhÞ ¼ ð�1

2Þ
n�1 Rðn�1Þ=2 Hrn�1ðhÞ e�ðR=4Þ h2

; ð22Þ

QnðhÞ ¼
RTnðhÞ
@n�1

h gðhÞ ¼ An R ~TTnðhÞ
@n�1

h gðhÞ ð23Þ

(here HrnðhÞ ¼ Hn½12 R1=2h� are Hermite polynomials, constant An can always be factorized from Tn –– see Appendix
A), f̂fn can be written explicitly as

f̂fnðhÞ ¼ RAn e�ðR=4Þh2

Hrn�1ðhÞ FnðhÞ ð24Þ
where

FnðhÞ ¼
ð
e�SnðhÞ GnðhÞ dh ; GnðhÞ ¼

ð ~TTnðhÞ eSnðhÞ

Hrn�1ðhÞe�ðR=4Þh2 dh : ð25Þ

The complete solution fn is obtained by summing jn and f̂fn:

fnðhÞ ¼ An e�ðR=4Þh2

Cn1F1
1� n

2
;
1

2
; ðR=4Þ h2

� �
þ RHrn�1ðhÞ FnðhÞ

� �
; ð26Þ

where the integrals Fn and Gn, using eqs. (76), (77), may be rewritten as

FnðhÞ ¼
ð

eðR=4Þh2

Hr2n�1ðhÞ
GnðhÞ dh ; ð27Þ

GnðhÞ ¼
Ð

~TTnðhÞHrn�1ðhÞ dh : ð28Þ

Formula (26), obtained by means of the transformation (16) with n > 0, holds also in the case n ¼ 0, simply defining
Hr�1 ¼ 1.

We will now consider the asymptotic behaviour as jhj ! 1 of the solutions (26). We will see that the generic fn

has necessarily an algebraic decay, except when n ¼ 1; 2.
At the first order, the asymptotic expansion gives velocity profiles decaying very rapidly, because f1 is a Gauss-

ian function (see § 3.1).
The second order solution has a more complicated behaviour. As we show in appendix B, the decay of f2 is

Gaussian only when C2 ¼ 0, i.e., when the first part of f2 (involving the confluent hypergeometric function) vanishes,
whilst for C2 6¼ 0 the decay is of the kind f2 � h�2.

The study of the asymptotic behaviour for n � 3 may be carried out by considering the properties of the conflu-
ent hypergeometric function, involved in the first part of fn, and the behaviour of the integral Fn, that dominates the
second part of fn. This integral depends on the other integral Gn, and finally on the inhomogeneous term Tn, that is
made up of a combination of the fi of the previous orders (i ¼ 1; . . .n� 1) with their derivatives, and of the cn. The
complete analysis is presented in Appendix B. At the third order, it turns out that there are no more chances to obtain
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a Gaussian decay: actually, it can be shown that f3 � h�3, even if f2 has a Gaussian behaviour, as yet pointed out by
GOLDSTEIN [10]. Furthermore, the algebraic decay law fn � h�3 turns out to hold as a general property for n � 3,
together with the property cn � constant for n � 2 that physically means entrainment of flow from the ambient fluid
(see again Appendix B).

On the contrary of what upheld by Goldstein, one may easily verify that far away from the wake center, introducing
his notation where hg ¼ ð2nÞ�1=2 ðUdÞ1=2 yx�1=2 ¼ ðR=2Þ1=2 yx�1=2 (n is the viscosity and d the reference length), the
limit of fng � h�3

g as n ! 0 is zero. Thus, this would not be a reason to ‘a priori’ discard an asymptotic behaviour of
the kind � h�3 as he did.

According to this solution behaviour, the asymptotic form of the Prandtl equations here used may be evaluated.
The result is that at x ¼ const, as h ! 1, the lateral diffusion (�h�4) becomes progressively smaller than the convec-
tion (�h�2). Thus asymptotically the Prandtl model moves naturally to a model of simple convective transport.

At this point, we know that solution (26) is not diverging as jhj ! 1, but we still need to discuss the other
possible singularities in the domain jhj < 1. Considering eq. (28), the integrand is made up by the factor ~TTn ¼ Tn=A

n,
i.e. the inhomogeneous term of eq. (12), that is a regular function for finite h, and the Hermite polynomial Hrn�1.
Thus, Gn has no singularities for jhj < 1. The integrand of eq. (27) involves instead the factor Hr�2n�1, that has n� 1
poles of order 2 at the points fh0; h1; . . . ; hn�1g, which are the zeroes of the Hermite polynomial. By integrating be-
tween separate singularities, Fn results a function with n� 1 poles of order 1 at the isolated points fh0; h1; . . . ; hn�1g.
Now, in relation (26) the function Fn is multiplied by Hrn�1, i.e. by the polynomial with n� 1 simple zeroes at the
same points fh0; h1; . . . ; hn�1g, thus these singularities are eliminated.

As regard the convergence, the series representations (9) used here are asymptotic power series for u and v as
x ! 1 and for every value of the variable h. This is true since the set fx�n=2g ðn ¼ 0; 1; 2; . . .Þ is an asymptotic
sequence, i.e. x�ðnþ1Þ=2 ¼ oðx�n=2Þ for each n (definition in the sense given by Carleman, Borel). Thus, by the theorem
of summation of asymptotic series (Erdélyi [8], ch. I) the series possesses a sum, in the generalized sense of the
existence of an equivalence relation. This means that it exists a class of functions which are asymptotically equal to u
as x ! 1. The determination of the convergence in the ordinary sense is a very arduous problem, but it is possible to
obtain partial results relevant to the part of the series corresponding to the homogeneous general solution: actually, it
can be shown that this part has an ordinary sum, with a certain convergence radius, by means of the comparison
criterion, provided that the succession of constants fCng is bounded.

The solutions obtained have a general physical meaning, being related to a generic two dimensional wake. The
procedure might be in principle extended to jets (getting again an infinite succession of linear equation for the factor
functions fn, except the first) and proper boundary-layers (in this last case the hierarchy obtained is constituted by
non linear ordinary differential equations) by using the relevant accessory conditions and powers series expansion in x
(see Schlichting [16], p. 734). Note that, up to this point, only the conditions at x ! 1 and jyj ¼ 0, jyj ! 1 were
used. The constant A and fCng are to be determined through the boundary condition at x ¼ x

*
, which are specified

by an experimental velocity profile.

3.1 Solutions of the first four order equations

Using relations (26) and (10) the following results may be easily obtained:

Order 0 [Oðx�1Þ].

equation:
1

R
f00
0 þ

h

2
f0
0 ¼ 0 ; ð29Þ

solution: f0 ¼ A0 e�ðR=4Þ h2

C01F1ð12; 12; ðR=4Þ h2Þ ¼ A0C0 ¼ 1 ; ð30Þ

c0 ¼ � 1

2
F0 þ

h

2
f0 ¼ � 1

2

ð
dh þ h

2
¼ 0 : ð31Þ

The property 1F1ða; a; zÞ ¼ ez has been applied. Constant C0 ¼ 1 is determined directly through the accessory
condition at x ! 1.

Order 1 [Oðx�3=2Þ].

equation:
1

R
f00
1 þ

h

2
f0
1 þ

1

2
f1 ¼ 0 ; ð32Þ

solution: f1 ¼ A e�ðR=4Þ h2

C11F1ð0; 12; ðR=4Þ h2Þ ¼ AC1 e
�ðR=4Þh2 ¼ �A e�ðR=4Þh2

; ð33Þ

c1 ¼
h

2
f1 ¼ �A

2
h e�ðR=4Þ h2

: ð34Þ

The property 1F1ð0; a; zÞ ¼ 1 was used. Constant AC1 should be determined by the accessory conditions of eq.
(1); it must be negative because f1 represent a velocity defect. It is possible to choose C1 ¼ �1 to get a value A > 0,
which should be related to the drag coefficient (see § 5). At the first order the well-known asymptotic Gaussian solu-
tion behaviour was recovered (SCHLICHTING [16], BATCHELOR [4]).
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Order 2 [Oðx�2Þ].

equation:
1

R
f00
2 þ

h

2
f0
2 þ f2 ¼ � 1

2
A2 e�ðR=2Þh2

; ð35Þ

solution: f2 ¼ A2 e�ðR=4Þh2

C2 1F1ð� 1
2 ;

1
2 ; ðR=4Þ h2Þ þRHr1ðhÞ F2ðhÞ


 �
¼ A2 e�ðR=4Þ h2

C2 1F1 � 1

2
;
1

2
; ðR=4Þ h2

� �
þ e�ðR=4Þ h2 þ 1

2

ffiffiffiffiffiffiffi
pR

p
h erf

ffiffiffiffi
R

p

2
h

� �� �
; ð36Þ

c2 ¼
A2

2

(
C2

ð
e�ðR=4Þ h2

1F1 � 1

2
;
1

2
; ðR=4Þ h2Þ dh þ 1

2
h e�ðR=4Þh2

1F1 �1
2
;
1

2
; ðR=4Þh2

� �� ��

þ 1

2
h e�ðR=2Þh2 þ

ffiffiffiffiffiffiffi
p

2R

r
erf

ffiffiffiffi
R

p

2
h

� �
�

ffiffiffiffi
p

R

r
�

ffiffiffiffiffiffiffi
pR

p

4
h2

� �
e�ðR=4Þ h2

erf

ffiffiffiffi
R

p

2
h

� �)
: ð37Þ

Here the integral F2ðhÞ has been calculated explicitly, and C2 should be determined by the accessory conditions.
The integral in (37) may be determined by numerical integration or approximated with rational and special functions;
nevertheless.

Order 3 [Oðx�5=2Þ].

equation:
1

R
f00
3 þ

h

2
f0
3 þ

3

2
f3 ¼ � 3

2
f1f2 �

1

2
hðf1f2Þ

0 þ f0
2c1 þ f0

1c2 ; ð38Þ

solution: f3 ¼ A3 e�ðR=4Þh2

C3 1F1ð�1; 12; ðR=4Þ h2Þ þRHr2ðhÞ F3ðhÞ

 �

¼ A3 e�ðR=4Þ h2

C3ð1� ðR=2Þ h2Þ þ RðRh2 � 2Þ F3ðhÞ½ �

¼ A3 e�ðR=4Þh2 ð2�Rh2Þ ½12 C3 �RF3ðhÞ� : ð39Þ

Here the presence of the common factor ðRh2 � 2Þ is due to the fact that the Hermite polynomial Hr2 is proportional
to the confluent hypergeometric function (1F1ða; b; zÞ becomes a polynomial when a is a negative integer). The function
F3ðhÞ may be determined by numerical integration or approximated by special and rational functions. Finally, C3 is
determined by the accessory conditions.

3.2 The wake width

The obtained expansions allow to write the dependence on x and R of the wake width d as defined by the displace-
ment thickness of the boundary-layer theory:

d ¼ 2

1� uc

ð1
0

ð1� uÞ dy ; ð40Þ

where uc is the velocity at the wake center.
At the order 0, the wake flow is u0 ¼ 1, so eq. (40) gives d ¼ 0.
At the first order, the wake flow is u1 ¼ 1þ x�1=2f1ðhÞ ¼ 1�Ax�1=2 e�ðR=4Þ h2

, and uc ¼ 1�Ax�1=2. Relation
(40) gives

d ¼ 2

Ax�1=2

ð1
0

A e�ðR=4Þ h2

dh ¼ 2
p

R

� �
x1=2 ; ð41Þ

and we find the well-known asymptotic property d / x1=2.
At the second order, the wake flow is u2 ¼ 1þ x�1=2f1ðhÞ þ x�1f2ðhÞ, using one obtains

d ¼ 2 p=Rð Þ1=2 x1=2 þA½If2
ðC2Þ � p=Rð Þ1=2 ð2C2 þ 1Þ� ð42Þ

where

If2
ðC2Þ ¼

Ð1
0

e�ðR=4Þh2 ½2C2 1F1ð�1
2;

1
2; ðR=4Þ h2Þ þ e�ðR=4Þh2 þ 1

2 ðpRÞ1=2 h erf 1
2 R

1=2h
� �

� dh

¼ 2C2

Ð1
0

e�ðR=4Þh2

1F1ð�1
2;

1
2; ðR=4Þ h2Þ dh þ 2p=Rð Þ1=2 : ð43Þ

The integral at the right hand side is equal to zero, thus the wake width is now corrected by a constant term indepen-
dent of x:

d ¼ p=Rð Þ1=2 ½2x1=2 þAð21=2 � 1� 2C2Þ� : ð44Þ
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By considering higher orders corrections, the wake width is found to be represented by an expansion of the kind

dðx;RÞ ¼
P1
i¼0

x1�i=2diðRÞ ð45Þ

with d0 ¼ 0; d1 ¼ 2ðp=RÞ1=2; d2 ¼ ðp=RÞ1=2 Að21=2 � 1� 2C2Þ; . . . .

4. Limits of the thin shear layer model

The asymptotic expansions we determined are solutions of the Prandtl boundary-layer equations (1), (2), deduced from
the Navier-Stokes equation under the condition

l ¼ dðx;RÞ
LðxÞ � 1 ; ð46Þ

where the thickness d is the internal scale of the flow and the length L is the external longitudinal scale. We checked
this assumption a posteriori by using the expression for dðx;RÞ up to the third order. Function l is the parameter
fixing the quality of the physical assumption adopted, see Fig. 1, where the maps lðx;RÞ ¼ constant are shown for the
cylinder wake, that will be described in the following paragraph. In this case we assumed an external scale equal to the
distance from the cylinder center, i.e. LðxÞ ¼ xþ d.

A more rigorous analysis of the boundary-layer model validity can be made by considering the complete 2D
steady Navier-Stokes equations and reasoning on the results they give once solutions in the form (9) are admitted.
Writing the dependence on x of the velocity variables and their derivatives:

u ¼ 1þ x�1=2f1ðhÞ þ . . . ¼ 1þOðx�1=2Þ ; ð47Þ

v ¼ x�1c1ðhÞ þ . . . ¼ Oðx�1Þ ; ð48Þ
@x ! @x � 1

2 x
�1h@h ¼ Oðx�1Þ ; ð49Þ

@y ! x�1=2@h ¼ Oðx�1=2Þ ; ð50Þ

it is possible to determine the order of magnitude of each term in the Navier-Stokes equations.
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Fig. 1. Map of lðx;RÞ ¼ dðx;RÞ=ðxþ dÞ ¼ constant. The positions of experiments by KovMaasznay are shown. The abscissa starts at 10,
a value typically greater than dþ 1 (the point before which the series cannot converge) in the Reynolds numbers range considered



Since the pressure gradient @yp may be at most supposed of order x�2, the pressure variation across the wake
should be of order x�3=2, and the general law for the pressure be of the kind p ¼ p0 þ x�3=2p3ðhÞ þOðx�2Þ, with
p0 ¼ p1. Then, the magnitude of the downstream gradient would be at most: @xp � x�5=2.

By substituting in the momentum balance in the x-direction the pressure law p ¼ p0 þ x�3=2p3ðhÞ þ . . ., together
with the expressions u ¼ 1þ x�1=2f1ðhÞ þ . . . and v ¼ x�1c1ðhÞ þ . . ., the ODEs remain the same as (12) up to the
equation at n ¼ 3 that becomes

x�5=2½R�1f00
3 þ 1

2 hf0
3 þ 3

2 f3 ¼ T3 � 1
2 ð3p3 þ hp03Þ þ ð4RÞ�1 ð3f1 þ 5hf0

1 þ h2f00
1Þ� :

In general, every equation at n � 3 will change:

x�ðnþ2Þ=2½R�1f00
n þ 1

2 hf0
n þ 1

2 nfn ¼ Tn þ (pr. gradient terms)þR�1ðstreamwise diffusionÞ� ; ð51Þ

where the longitudinal viscous stress divergence term are known from the previous orders, and the pressure gradient
terms are to be determined from the balance in the y-direction.

The present theory for the determination of the velocity profiles could be improved by simply including, after
the second order has been attained, some extra terms in the inhomogeneous part of each equation Lnfn ¼ Tn. How-
ever, it is important to check whether these corrections are really significant.

For n ¼ 3, the order of magnitude of the corrections may be estimated in the following way. At the leading
order, the Navier-Stokes equation for the y-direction in the coordinate system fx; hg is

x�1=2p0 ¼ R�1x�1v00 � u @xvþ 1
2 x

�1huv0 þOðx�5=2Þ : ð52Þ

By substituting u ¼ 1þ x�1=2f1ðhÞ þ . . . and v ¼ x�1c1ðhÞ þ . . ., we obtain

p ¼ p0 þ x�3=2p3ðhÞ þOðx�2Þ ð53Þ
where

p3 ¼ R�1c0
1 þ 1

2 h c1 þ 1
2

Ð
c1 dh ; ð54Þ

by substituting the known expression c1 ¼ �ðA=2Þ h e�ðR=4Þh2
the result is

p3 ¼ 0 ; ð55Þ

hence the pressure gradient could be inserted at most in the next order equation, and we must state
p ¼ p0 þ x�2p4ðhÞ þOðx�5=2Þ.

As regards the longitudinal divergence of the viscous stress tx, an easy check of its magnitude order may be
directly done. Function f1 is known and thus we have

ð4RÞ�1 ð3f1 þ 5hf0
1 þ h2f00

1Þ ¼ �Að4RÞ�1 e�ðR=4Þh2 ð14 R2h4 � 3h2 þ 3Þ : ð56Þ

Comparison of this function with T3 shows that it represent a correction of at most 0.6% at R ¼ 40 and 0.1% at
R ¼ 100.

At the third order of accuracy there is no contribution from the pressure variations and the longitudinal diffu-
sion is still two-three order of magnitude lower than: i) the lateral diffusion ð1=RÞ f00

n and ii) the non linear terms,
contained in Tn. Note that the mathematical structure of eqs. (51) is not different from that of eq. (12). The above
corrections simply add each one a term to the inhomogeneous part of the equation. The linearity of eqs. (2.18) is not
spoiled, since the boundary-layer equations already contain the full non linearity of the Navier-Stokes equations. As a
consequence, the determination of the solution for eqs. (51) would not be affected by further difficulties. Since the
correction pertinent to the streamwise diffusion is so small at the third order, it is not certain which higher stage of
accuracy has to be reached to get them of the same order of the lateral diffusion.

5. An approximated solution for the cylinder wake

In this section we consider the wake generated by the circular cylinder. To determine the laminar steady solution we
must introduce the field information equivalent to the boundary condition at x ¼ x0, that is the velocity distributions
at a number of diameters downstream of the body sufficient to be inside the part of the field where the thin shear layer
hypothesis holds. Constant A can be determined through the adimensional drag coefficient

D

ldqU2
¼ 1

2 cD ð57Þ

(D=l is the drag force per unit length, d the diameter, U the free stream velocity, and cD the adimensional drag
coefficient) that is equal to the total momentum loss induced in the flow by the presence of the body. Thus

1
2 cD ¼

Ð1
�1

uð1� uÞ dy : ð58Þ
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where u ¼ uðyÞ for x � x0. At the first order the wake flow is u1 ¼ 1þ x�1=2f1ðhÞ ¼ 1�Ax�1=2 e�ðR=4Þh2
, having deter-

mined that C0 ¼ 1 through the boundary condition at x ! 1 and placed C1 ¼ �1 in order to get a positive A in
correspondence to a positive cd. Substituting in eq. (58) we get

1
2 cD ¼ �

Ð1
�1

½1þ x�1=2f1ðhÞ� x�1=2f1ðhÞ dy ¼ �
Ð1

�1
x�1=2f1ðhÞ dyþ Oðx�1Þ ;

i.e.

1
2 cD ¼ A

ð1
�1

e�ðR=4Þ h2

dh ¼ 2
p

R

� �1=2

A : ð59Þ

Constant A is a function of R also because cd, an experimentally well-known quantity, is a strong function of the
Reynolds number:

AðRÞ ¼ 1
4 ðR=pÞ1=2 cDðRÞ : ð60Þ

At the second order, the wake flow is 1þ x�1=2f1ðhÞ þ x�1f2ðhÞ, and substituting again in eq. we obtain, excluding
higher order terms,

1
2 cD ¼ �

Ð1
�1

f1ðhÞ dh � x�1=2 Ð1
�1

½f2ðhÞ þ f2
1ðhÞ� dh : ð61Þ

By separating equal powers of x:

1
2 cD ¼ �

Ð1
�1

f1ðhÞ dh ; ð62Þ

0 ¼
Ð1

�1
f2ðhÞ þ f2

1ðhÞ

 �

dh : ð63Þ

The second relation gives a new condition:

0 ¼
ð1

�1

½f2ðhÞ þ f2
1ðhÞ� dh ¼ A2C2

ð1
�1

e�ðR=4Þh2

1F1 � 1

2
;
1

2
; ðR=4Þ h2

� �
dh

2
4

þ 1

2

ð1
�1

e�ðR=2Þ h2

dh � 1

4

p

R

� �1=2
ð1

�1

h e�ðR=2Þh2

erf
1

2
R1=2h

� �
dh

#
; ð64Þ

that however does not allow to determine constant C2, since on the right hand side the first integral is zero, while the
sum of the second and third integral vanishes exactly. To recover the values of the constant factors at the higher
orders one has to fit an experimental distributions at x ¼ x0 inside the domain of validity of the boundary layer
approximation, see also STEWARTSON [17] for a neat explanation of the influence such boundary information has on the
factors of every term in the expansion. We used the experimental profiles by KOVÁSZNAY [14]. These are still one of the
more detailed source in the literature and comprehend cross-section profiles in the middle wake at two different Rey-
nolds numbers (steady flow at R ¼ 34 and averaged unsteady flow at R ¼ 56). Vice versa there is a lack of profiles
relevant to the middle portion of the wake and coming from numerical solution of the Navier-Stokes equations. At
R ¼ 34 there are two near wake half profiles –– located two and five diameters downstream where also KovMaaszany
performed measurements –– presented by YANG and ZEBIB [20] in a paper dealing with the first instability of the cylin-
der wake. But these profiles are inside a wake region where our assumption does not hold. An analogous situation
prevents to contrast our profiles to other numerical results, see for instance APELT [2], KELLER and TAKAMI [12],
NISHIOKA and SATO [15], and FORNBERG [9].

It is very recent the availability of numerical approximated profiles (BERRONE [5, 6]) in the wake of the circular
cylinder obtained by an a posteriori control error procedure based on a residual estimate, see BABU�SSKA and RHEINBOLDT

[3], applied to an adaptive stabilized finite element discretization of the stationary incompressible Navier-Stokes equa-
tions (VERF€UURTH [19]). We contrasted our expansion solution with a numerical solution (BERRONE [5]) based on this
adaptive discretization (where h is the maximum diameter of the finite element distribution) on a domain W that
reaches 30 diameters ahead of the cylinder, 180 diameters behind it, and 60 diameters laterally. The boundary condi-
tions were of no slip on the cylinder and of uniformity at infinity. The number of grid points was 40926 and the true
error estimate, measured in the norm,

ju� uhj1;W þ kp� phk0;W

juhj1;W þ kphk0;W

� 0:0149 ;

where W represents the computation domain.
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We also used Berrone’s data to determine the position of the virtual origin of the wake flow, relatively to the
origin of the arbitrary reference system. We did it by contrasting our expansions with a numerical profile, assumed as
our experimental reference far field representation, computed at 100 diameters downstream of the cylinder center. For
instance at R ¼ 34, the virtual origin turned out to be placed 5:1� 2D downstream of the cylinder center. The accu-
racy was estimated by using the data relevant to another numerical profile placed 60 diameters downstream and at the
same Reynolds number.

Writing the expression of the basic flow up to the fourth order, the constants C2; C3; C4 and the virtual origin d
were fitted to KovMaasznay’s experimental and Berrone’s numerical data through the least square method. In the range
30 < R < 60, the polynomial approximations of the factors A (given by (60)) Ci; i ¼ 0; 4 and d as functions of R
turned out to be

AðRÞ � 1:16þ 5:1 � 10�3R� 1:9 � 10�5R2 ; ð65Þ

C0 ¼ 1 ; ð66Þ

C1 ¼ �1 ; ð67Þ

C2ðRÞ � �13:0þ 0:669R� 0:0105R2 þ 5:14 � 10�5R3 ; ð68Þ

C3ðRÞ � �21:þ 1:0R� 0:016R2 þ 7:9 � 10�5R3 ; ð69Þ

C4ðRÞ � �0:27þ 0:16R� 4:0 � 10�3R2 þ 2:5 � 10�5R3 ; ð70Þ

d � 11:1� 0:177R : ð71Þ

The relative comparison of the first four orders of accuracy for these expansion solutions is shown in Figs. 2 and 3. In
Fig. 4 at R ¼ 34 our longitudinal velocity component distributions are in good accordance with the experimental data
by Berrone and KovMaasznay. In Fig. 5 at R ¼ 56, a value of the control parameter where the stationary wake solution is
unstable, our longitudinal velocity component distributions agree with the time averaged experimental distribution by
KovMaasznay. The profiles by KovMaasznay are affected by a slight asymmetry associated to the hot wire probe lateral
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Fig. 2. Velocity component u: successive orders approximations at R ¼ 34 and twenty diameters downstream of the
center of the cylinder ðd ¼ 5:1Þ
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Fig. 3. Velocity component v: successive orders approximations at R ¼ 34 and twenty diameters downstream of the
center of the cylinder ðd ¼ 5:1Þ

Fig. 4. R ¼ 34. Velocity component u. Present expansion solution ( ), Berrone’s numerical solution (...........), experimental data
by KovMaasznay [14] (*)



placing. According to KovMaasznay we assumed that the half-distribution measured before the wake center was reached be
unaffected. To figure out an accuracy estimate for our results we must however estimate also the accuracy of the experi-
ment. To this end we used the numerical simulations by Berrone as reference. At R ¼ 34 a deviation
DB ¼ ku� uBk20;L=k1� uBk20;L ’ 6:5% turns out for KovMaasznay’s data, where u is the measured longitudinal velocity
component, the transversal component being not measured, and L is the station at x ¼ 20 diameters from the center of
the cylinder. As regard our approximate solution we find a DB of about 1:7%, a lower value with regard to the meas-
urements.

6. Summary and conclusions

Solutions in the form of asymptotic expansions were determined for the laminar steady configuration of the two dimen-
sional symmetric incompressible wake. The equations of motion are written under the thin shear layer approximation
and a quasi-similarity transformation for the independent coordinates is used. The solution validity is therefore limited
to the middle and far portions of the field. The expansions are power series of the streamwise spatial variable with
negative fractional exponents. The power law has been selected by imposing the constancy of the total rate of momen-
tum transport in the downstream direction. The expression of the general term of order n of the expansion was analyti-
cally obtained. Further limiting assumptions as Oseen’s successive approximations or the shape of the lateral asympto-
tics were not used.

The inner coherency of the position adopted was a posteriori analyzed. We demonstrated that, at the third
order, the corrections due to the pressure gradients and streamwise viscous diffusion, foreseen by the steady Navier-
Stokes model, are still negligible: the pressure contribution identically vanishes and the longitudinal diffusion still
remains from two to three order of magnitude lower than the lateral diffusion and the convective transport.

We analyzed the asymptotic behaviour of our expansion in the lateral far field, demonstrating that at finite
values of x the coefficient function fðhÞ for the streamwise velocity decays to zero as a Gaussian law for n ¼ 1 and as
a power law of exponent �2 for n ¼ 2 and of exponent �3 for n � 3, while the coefficient function cðhÞ for the cross-
stream velocity goes to zero for n ¼ 0; 1 and to a constant value for n � 2, that leaves v to vanish as x�3=2 for x ! 1.
When x ! 1 our solution coincides with the Gaussian representation given by the Oseen approximation. According to
these solutions the asymptotic form of Prandtl’s equations with zero longitudinal pressure gradient confirms the physi-
cal expectation of a lateral diffusion becoming progressively smaller in comparison with the non linear convection. This
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Fig. 5. R ¼ 56. Velocity component u. Present expansion solution ðd ¼ . . .Þ ( ), experimental data by KovMaasznay [14] (*)



expansion foresees the entrainment of ambient fluid from the sides and agrees with the interpretation of the field at
large distances from the body as a superposition of a uniform flow and of a source-like flow placed at the center of the
body to compensate for the mass flux deficit in the wake. The middle and far wake regions so described are in excellent
contrast with the experimental data available in the middle wake of the circular cylinder by Kov�aasznay [14]. We
consider these expansion solutions very useful to represent the diverging basic flow of the middle and far wake in
application concerning the non parallel stability analysis.

Appendix

A Coefficients of the transformed equation (17)

A.1 The functions Pn(h) and Sn(h)

Function Pn is the second coefficient of the transformed equation (17), and is obtained directly from the substitution (16) in eq. (15).
It is an even function that has n� 1 simple poles. The general formula can be expressed by means of the Hermite polynomials
HrnðhÞ ¼ Hn½12R1=2h�:

P2mðhÞ ¼ �R1=2 Hr2mðhÞ � 1
2 R1=2h Hr2m�1ðhÞ

Hr2m�1ðhÞ
; ð72Þ

P2mþ1ðhÞ ¼ �R1=2 Hr2mþ1ðhÞ � 4nHr2m�1ðhÞ
Hr2mðhÞ

: ð73Þ

The asymptotic behaviour is Pn � �ðR=2Þ h ! �1 as h ! �1. Function Pn is rational (a polynomials ratio), so it is always analyti-
cally integrable, what leads to the expressions

S2mðhÞ ¼
Ð
P2mðhÞ dh ¼ ln R�1Hr22m�1ðhÞ


 �
� 1

4 Rh2 ; ð74Þ

S2mþ1ðhÞ ¼
Ð
P2mþ1ðhÞ dh ¼ ln Hr22mðhÞ


 �
� 1

4 Rh2 ; ð75Þ

e�S2mðhÞ ¼R�1Hr�22m�1ðhÞ e�ðR=4Þ h2

; ð76Þ

e�S2mþ1ðhÞ ¼Hr�22mðhÞ e�ðR=4Þ h2

: ð77Þ

A.2 The functions Tn(h) and Qn(h)

Function Tn is the inhomogeneous term in eq. (15). It is obtained directly by using the expressions (9) in the boundary-layer equation
(1), it is smooth like u and v.

A simplification in espression (13) is made possible noting that �ðh=2Þ f0
n�1f1 and f0

n�1c1 are equal and opposite. Thus, Tn

may be rewritten as

Tn ¼ � n

4

Pn�1
i¼1

fifn�i þ
Pn�2
i¼1

� h

2
f0

ifn�i þ f0
icn�i

� �
: ð78Þ

A useful assumption is to factor the constant An from the Tn function, writing

Tn ¼ An ~TTn : ð79Þ

Constant A is defined as a proportionality coefficient for f1, i.e. f1 / A, and also c1 / A. Thus, we have T2 / f2
1 / A2, and this gives

f2 / A2 and c2 / A2. Then, we obtain T3 / A3, and so on; the property Tn / An can be stated by the induction method. From
relation (78) it is possible to show that Tn / An e�ðR=2Þ h2

. In spite to this proportionality relation, in B it will be shown that the
asymptotic behaviour of Tn is in general of the kind Tn � h�3 as jhj ! 1 for n � 3, whilst T2 � e�ðR=2Þ h2

. Tn is in general an odd
function, as can be deduced from the original partial differential equations.

The function Qn is defined by the relation (18), so

QnðhÞ ¼ R
TnðhÞ

@n�1
h gðhÞ /

TnðhÞ
Hrn�1ðhÞ

; ð80Þ

and this shows that Qn has n� 1 simple poles.

B Algebraic decay of the solutions

Function f2, calculated in § 3.1, when expanded in separate terms becomes

f2 ¼ A2C2 e
�ðR=4Þ h2

1F1ð�1
2;

1
2; ðR=4Þ h2Þ � 1

2 A
2 e�ðR=2Þ h2 � 1

4 A
2ðpRÞ1=2 e�ðR=4Þ h2

h erf 1
2R

1=2h
� �

; ð81Þ

The asymptotic behaviour of this function as jhj ! 1 is determined by the term

A2C2 e
�ðR=4Þ h2

1F1ð�1
2;

1
2; ðR=4Þ h2Þ � ½A2C2 e

�ðR=4Þ h2 � ½�1
2 e

ðR=4Þ h2
R=4Þ h2ð Þ�1� � h�2 ; ð82Þ

and the behaviour of the whole function may written as

f2 � CC2h�2 þ ChE þ CE2 ; ð83Þ
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where we introduce the short notation E ¼ e�ðR=4Þ h2
and the symbol C to represent a generic asymptotic constant. We see that f2

could satisfy a ‘constraint of rapid decay’ only in the particular case of a constant C2 ¼ 0, as done in the paper by Goldstein [10],
and this would lead to f2 � nE; otherwise, the behaviour is f2 � h�2. The behaviour of the function c2 is given by formula (10):

c2 ¼ 1
2 hf2 þ 1

2

Ð
f2 dh : ð84Þ

When f2 is integrated, the secondary term CE2, which is a Gaussian function, generates an error function term. Thus c2 behaves like
a constant as jhj ! 1, independently of the value of the constant C2, i.e., c2 goes as a constant in both cases of f2 Gaussian or
algebraic. This shows also that, in general, in a correct study of the asymptotic properties of fn we must retain not only the domi-
nant term, that is usually algebraic, but also the terms that, after an integration, produce asymptotic constants. The behaviour of c2
is a general property, since it is shown by every cn with n > 2, as we will see. This property is related to the phenomenon of flow
entrainment toward the center of the wake.

After the second order, it is useful to develop a general method to study the behaviour of the generic fn, because this functions
depend on the integrals Fn, that cannot be determined explicitly when n > 2: first, we write fn in the form

fnðhÞ ¼AnCn e
�ðR=4Þ h2

1F1
1� n

2
; 12; ðR=4Þ h2

� �
þRAn e�ðR=4Þ h2

Hrn�1ðhÞ FnðhÞ ¼ fAn þ fBn ; ð85Þ

so that the function is splitted in two parts that can be considered separately. The first part fAn contains as a factor the confluent
hypergeometric function and it shows different asymptotic behaviours depending on the parity of n:

fAn � E 1F1
1� n

2
;
1

2
; ðR=4Þ h2

� �
�

E h�nE�1 � h�2m for n ¼ 2m

h2mE for n ¼ 2mþ 1

(
; ð86Þ

the latter being due to a property of the hypergeometric function (if a is an integer, 1F1ð�a; b; zÞ becomes a polynomial of order a).
This is a first cause for the algebraic decay as jhj ! 1 of fn, that could be eliminated simply by setting C2m ¼ 0. But we will see
that also fBn has an algebraic decay, and this part of fn cannot be manipulated because does not carry as factor integration con-
stants. Its asymptotic behaviour is of the kind

e�ðR=4Þ h2

Hrn�1ðhÞ FnðhÞ � hn�1FnE : ð87Þ

Integral Fn involves Gn, as shown by eq. (27):

Fn ¼
Ð

E�1Hr�2n�1Gn dh �
Ð

h�2nþ2E�1Gn dh : ð88Þ

Let us start from the study of Gn, written explicitly using formula (13):

AnGn ¼
ð
Hrn�1Tn dh

�
ð

hn�1 � n

4

Pn�1
i¼1

fifn�i þ
Pn�2
i¼1

� h

2
f0

ifn�i þ f0
icn�i

� �� �
dh : ð89Þ

Suppose to know the asymptotic behaviours of the previous orders functions, that are in general represented by sums of the kind (83). By
substituting for these expressions in the products fifn�i;f0

ifn�i;f0
icn�i, we will find a new sum, involving several combination of the

previous terms with their derivatives. The result must be multiplied by the polynomial Hrn�1 � hn�1, and integrated once. This will lead
to another sum of terms, that represents the asymptotic behaviour of Gn, and that can be used to determine the behaviour of Fn, defined
by eq. (88). After the second integration we can use eq. (87) to obtain the final expression that represents the asymptotic behaviour of
fBn. Finally, the behaviour of fn will be determined by adding the term coming from fAn, given by (86). It is worth noting that here the
integrations are to be performed asymptotically; the required integration rules are shown in Table 1 (the determination of integrals
involving Gaussian functions is not immediate. See for example Abramowitz and Stegun [1], chapters 5 and 7).

This method is clearly explained by the example corresponding to n ¼ 3. The behaviours of f1; f2; c1; c2 bring into T3 several
combination of the terms listed above:

f1 � E ;

f2 � CC2h�2 þ ChE þ CE2 ;

c1 � hE ;

c2 � C ;

ð90Þ

Substitute for these asymptotic behaviours in (89), keeping all the terms, and multiplying by Hr2. By integrating once, we find

G3 � ðCC2 þ CÞ þ CC2hE þ ðother terms � hkEj; j > 0Þ ; ð91Þ

that represents the asymptotic behaviour of G3. This goes into F3, according to formula (88). After a second integration we have

F3 � ðCC2 þ CÞ h�5E�1 þ CC2h�2 þ ðother terms � hkEj; j � �1Þ : ð92Þ

232 ZAMM � Z. Angew. Math. Mech. 82 (2002) 4

Tab l e 1: Asymptotic integration rules

Ð
hk dh �

hkþ1 for k 6¼ �1
lnjhj for k ¼ �1

(
;

Ð
hkEj dh �

c for k even; j > 0

hk�1Ej for k odd; j > 0

(
;

Ð
hkE�j dh � hk�1E�j ðj > 0Þ :



Substituting for F3 in the eq. (87) we get the asymptotic behaviour of fB3:

fB3 � ðCC2 þ CÞ h�3 þ CC2E þ ðterms � h�5Þ þ ðother terms � hkEj; j > 0Þ : ð93Þ

From relation (86) we know that fA3 � h2E, so we may express the asymptotic behaviour of f3 as

f3 � ðCC2 þ CÞ h�3 þ CC2E þ Ch2E þ ðterms � h�5Þ þ ðother terms � hkEj; j > 0Þ : ð94Þ

Note that, for brevity reasons, in the asymptotic formulae to keep the parity of the solutions, the sign of the constant factors
of odd powers of h, here generically called C, may change switching from h ! 1 to h ! �1.

The above result shows that f3 � h�3 for every value of C2, i.e. whether or not f2 has a Gaussian decay. More, as an
effect of the integration of the terms � E; h2E, we see from Table 1 that c3 ¼ ðh=2Þ f3 þ

Ð
f3 dh behaves as a con-

stant.
For the following orders, supposing C2 6¼ 0, it is no more necessary to retain explicitly the constant C2 in the calculations,

because now we know that it is impossible to obtain a complete series with Gaussian behaviour. Following the same method, the
results obtained for the orders 4 and 5 are

f4 � Ch�3 þ Ch�2E þ ðterms � h�k; k > 3Þ þ ðterms � h�k lnjhj; k > 3Þ þ ðterms � hkEj; j > 0Þ ; ð95Þ

c4 � C þ ðsecondary termsÞ ; ð96Þ

f5 � Ch�3 þ Ch4E þ ðterms � h�k; k > 3Þ þ ðterms � h�k ln jhj; k > 4Þ þ ðterms � hkEj; j > 0Þ ; ð97Þ

c5 � C þ ðsecondary termsÞ : ð98Þ

This leads to a simple hypothesis for the generic order i � 3:

fi � Ch�3 þ Ch2mE þ ðother secondary termsÞ ; ð99Þ
ci � C þ ðsecondary termsÞ ; ð100Þ

The term � h2mE in (99) leads to (100), because of the integration involved in the latter equation, see Table 1. This explains why it
is necessary to evidence at least one term showing this property.

The above behaviours can be stated by the induction method. It is necessary to suppose that relations (99) and (100) hold for
3 � i < n. By using the behaviours of f1;f2; c1; c2 (eqs. (90)) as a starting condition, it can be proved that properties (99), (100) hold
also for the order n.

First, study the behaviour of the generic Tn, as given by (13). This formula may be splitted in three parts, namely

Tan �
Pn�1
i¼1

fifn�i ; Tbn �
Pn�2

i¼1
hf0

ifn�i ; Tcn �
Pn�2

i¼1
f0

icn�i : ð101Þ

Their behaviour may be determined using the hypotheses and the starting conditions. By retaining only the dominant terms we have:

Tan � f1fn�1 þ f2fn�2 þ . . .þ fifn�i þ . . .þ f2fn�2 þ f1fn�1

� Ch�3E þ Ch�5 þ . . .þ cih
�6 þ . . . � h�5 ð102Þ

(note that this sum is symmetric, so that only half of the terms is to be considered), and, in a similar way,

Tbn � h�5 ; Tcn � h�3 : ð103Þ

Thus, Tn � Tcn � h�3, so that, substituting (89) in we find Gn � hn�3, and using then (88), we obtain Fn � h�n�2E�1. Finally, (87)
gives

fBn � h�3 : ð104Þ

Now, we know also the behaviour of fAn from relation (86), so we may write

fn �
Ch�3 þ Chn�1E þ . . . for n odd

Ch�3 þ Ch�n þ . . . for n even

(
ð105Þ

(here and in the followings the dots stand for other secondary terms with respect to h�3), and the thesis is proved only for n odd. In
order to extend the result to even n, we go back to the study of Tn, searching for secondary terms that may give rise almost to one
term of the kind h2mE in fn when n is even. To do this, we note that the behaviour of the second term in Tan (see (102)), if
expanded, is

f2fn�2 � Ch�5 þ Ch�2E þ . . . ; ð106Þ

note that the new term is not necessarily the second in order of magnitude. We are instead interested to evidence the presence of a
term of this particular kind, necessary to ensure that c � c. Relation (106) leads to

Gn � Chn�3 þ Chn�4E þ . . . ; ð107Þ

Fn � Ch�n�2E�1 þ Ch�n�1 þ . . . ; ð108Þ

fBn � Ch�3 þ Ch�2E þ . . . ; ð109Þ

and finally to

fn � Ch�3 þ Ch�2E þ . . . for n even. ð110Þ
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This completes the proof, since we may write now that for C2 6¼ 0 and n � 3

fn �
Ch�3 þ Chn�1E þ . . . for n odd

Ch�3 þ Ch�2E þ . . . for n even

(
; ð111Þ

cn � C þ ðother secondary termsÞ ; ð112Þ

the latter relation being given by the former through integration. This imply a global lateral asymptotic behaviour of the asymptotic
expansion of the kind fn � Ch�2 and cn � C for any value of C2 6¼ 0. Note that the second term of fn may be rewritten in the form
h2mE, with m ¼ ðn� 1Þ=2m for n odd and m ¼ �1 for n even.

The case of C2 ¼ 0 –– a particular choice, since it is almost impossible that the experimental boundary condition (6) may lead
to such a value –– induces the disappearing of many secondary terms from the asymptotic relationships above considered. However,
since f3 � h�3 independently of the value of C2, it is possible to demonstrate that in this case, when n � 4, relations (110) and (111)
become

fn � Ch�4 þ Ch2mE þ . . . ; ð113Þ

cn � C þ . . . ; ð114Þ

the latter relation being again given by the former through integration. This imply in its turn a global lateral decay of the expansion
for C2 ¼ 0 of the kind fn � Ch�3 and cn � C.
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