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a b s t r a c t

The aim of the present paper is to investigate the viability of macroscopic traffic models for
modeling and testing different traffic scenarios, in order to define the impact on air quality
of different strategies for the reduction of traffic emissions. To this aim, we complement a
well assessed traffic model on networks (Garavello and Piccoli (2006) [1]) with a strategy
for estimating data needed from the model and we couple it with the urban dispersion
model Sirane (Soulhac (2000) [2]).

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of sustainable mobility is to reduce negative impacts caused by transport on everyday life of citizens: air
pollution, acoustic pollution, traffic jams and car accidents. These impacts can vary in intensity in different urban areas,
depending on geographical and meteorological conditions, urban planning, social, economics and cultural factors.

Reduction of these impacts can be achieved by local authorities in several ways by promoting public transport and by
restricting the use of private cars (limited traffic areas, alternate circulation, car sharing, road pricing, traffic blocks).

However, it is well known that the planning and the realization of such measures require a considerable amount of
organizing, administrative and economic resources. Furthermore, such actions can have a noticeable social and economical
impact on the population. Hence, it is worthwhile to predict the effectiveness of the solutions whichwill be applied, in order
to define, case by case, which are the optimal ones.

Focusing on air quality, the aim of the present paper is to propose an approach for evaluating the effect of different
(modeled) traffic scenarios on the distribution of traffic air pollutants in urban areas, in order to study the impact of different
strategies on the reduction of the traffic emissions and, consequently, on the air quality. To achieve this aim, we couple a
well assessed traffic model on networks [1] with a pollutant dispersion model [2].

Concerning traffic simulations, several approaches can be used in order to evaluate traffic behavior. Traffic models
proposed in literature include microscopic models, in which the behavior of each traveling vehicle is described through its
position and velocity as a function of time,mesoscopic (or kinetic)models, inwhich traffic is analyzed through a distribution
function g(x, v, t) giving the number of vehicles that at time t are located in the position x and travel with velocity v, and
macroscopic models, which deal only with averaged quantities such as density and mean velocity. We refer the reader to

✩ The paper has been evaluated according to old Aims and Scope of the journal.
∗ Corresponding author. Tel.: +39 0110907503; fax: +39 0110907599.

E-mail addresses: stefano.berrone@polito.it (S. Berrone), francesca.desanti@polito.it (F. De Santi), sandra.pieraccini@polito.it (S. Pieraccini),
marro.massimo@ec-lyon.fr (M. Marro).

0898-1221/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2012.03.054

http://dx.doi.org/10.1016/j.camwa.2012.03.054
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:stefano.berrone@polito.it
mailto:francesca.desanti@polito.it
mailto:sandra.pieraccini@polito.it
mailto:marro.massimo@ec-lyon.fr
http://dx.doi.org/10.1016/j.camwa.2012.03.054


2 S. Berrone et al. / Computers and Mathematics with Applications ( ) –

Ref. [3] for a recent review on traffic models. We will focus here on macroscopic traffic models, specifically on the traffic
models on networks described in [1].

The pollutant dispersion model is implemented in the Sirane code [2] and is used to estimate and predict the downwind
concentration of air pollutants produced by emissions of vehicles traveling in urban networks or other factors. Since the
model requires the pollutant emissions as input data, the used trafficmodel aims atmodeling and providing these emissions
by a direct network traffic simulation without a detailed knowledge of origin–destination data of vehicles. In particular, we
propose here some rules that allowus to estimate someparameters needed for computationswhich should depend on driver
behavior, namely the traffic distribution arrays, see Section 2.3. In fact, these arrays have to be defined at each junction of the
road network, thus requiring experimental data on all roads involved.When large scale computations (large districts or even
whole cities) are performed, thiswould require a huge amount of data. Lack of data on someedges or nodes,will prevent from
the use of the traffic models here used, unless some rules are defined for creating the traffic distribution arrays. We remark
that we use here amodel city, but after a suitable validation the suggested proceduremay be used to assign such parameters
whenever/wherever real data are not available, so that they can be used to complement experimental measurements.

The paper is organized as follows. In Section 2 we recall some basic definitions and properties about macroscopic traffic
models and road networks. The dispersion model in urban areas implemented in the Sirane code is briefly described in
Section 3. Finally in Section 4 we discuss our numerical experiments.

2. The traffic model

Wewill consider heremacroscopic trafficmodels for the simulation of vehicular traffic. Following [4,1], wewill consider a
fluid-dynamic model for traffic flow on a road network bymeans of the conservation law formulation proposed by Lighthill,
Whitham and Richards [5,6].

2.1. Generalities on macroscopic traffic models

Macroscopic models for traffic flow were first introduced by Lighthill and Whitham in 1955 and, independently, by
Richards in 1956 in the pioneer works [5,6], by comparing vehicle traffic flow on ‘‘long crowded roads’’ and ‘‘highways’’
to fluid flows.

The Lighthill–Whitham–Richards (LWR) models are built prescribing conservation of the number of vehicles.
Conservation of cars in each road is described by the nonlinear partial differential equation

∂tρ + ∂xf (ρ) = 0 (1)

whereρ = ρ(x, t) ∈ [0, ρmax
] is the density of cars (number of vehicles for length unit), (x, t) ∈ R2, x is the space coordinate

along the road, t is time and ρmax is the maximum density of cars on the road; f (ρ) is the flux (or traffic flow), given by
f (ρ) = ρv(ρ) being v the velocity. Indeed, in LWR models v is assumed to depend only on ρ, typically being a smooth
decreasing function of ρ, as it is clear that the velocity of cars diminishes as density increases.

Several models are proposed in literature, corresponding to different expressions of the flux f as a function of ρ.
Furthermore, second order models have also been proposed, i.e. models in which the average velocity v of vehicles is no
more assumed to depend only on ρ, and a second equation is added for the evolution of v, see for example the Aw–Rascle
model [7].

We do not make any attempt here to compare different models. Furthermore, we remark that we aim at designing a
general tool matching a rather general macroscopic traffic model with urban dispersion models. To attain this target, the
choice of the specificmodel is not crucial, as the same settlement can bemadewith anymodel satisfying some rather general
assumptions (see later in Section 2.3). For the sake of simplicitywewill focus here on first ordermodels:wewill not consider
here viscosity terms or second (or higher) order models. Indeed, since the matching between the macroscopic traffic model
and Sirane does not depend in a crucial way on the specific traffic model used, the choice of a simple model allows us to
easily describe this coupling.

Furthermore, we will not consider multilane models, but circulation on parallel lanes in some larger streets is in fact
taken into account by considering different values of ρmax in such roads.

Finally, we will not consider multipopulation models. Although these models would fit very well our context, as vehicles
with different characteristics (e.g. cars, buses, trucks) may travel with different behaviors and pollute in different ways, they
would introduce systems of conservation laws, increasing computational cost. Nevertheless, we want to stress that possible
improvements in the trafficmodel can be taken into account, as the adopted approach can be extended to richermacroscopic
models, as for example the recent phase transition model on networks [8]. We leave to future work the implementation of
more complex traffic models.

2.2. Road networks

In order to model traffic in a urban framework, networks of roads must be taken into account. In [9] and the recent
works [10,11,4,1] traffic on road networks is considered.We followhere the approach of the latterworks, inwhich a network
is described as a directed graph, with a collection of directed arcs (edges) meeting at some vertices.
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In this subsection and in the following one we recall several results from [1] and we address the interested reader to this
reference for a deeper comprehension. We start recalling the following definitions.

Definition 1 (Network). A network is a couple (I, J) such that:

I is a finite collection of edges Ik, k = 1, . . . ,NE , described as intervals in R̄ = R ∪ {±∞}: Ik = [ak, bk] ⊆ R̄;
J is a finite collection of vertices Jk, k = 1, . . . ,NV . Each vertex Jk is given by the union of two non empty subsets of
{1, . . . ,NE} denoted by Inc(Jk) and Out(Jk).

The following is assumed:

1. For every k′
≠ k′′ we have Inc(Jk′) ∩ Inc(Jk′′) = ∅ and Out(Jk′) ∩ Out(Jk′′) = ∅.

2. If k ∉ ∪J∈J Inc(J) then bk = +∞; if k ∉ ∪J∈J Out(J) then ak = −∞. The two cases are mutually exclusive.

According to the previous definition, each vertex J is characterized by the indices corresponding to its incoming and
outgoing edges (i.e. indices of the sets Inc(J) and Out(J), respectively).

Condition 1 clearly requires that each edge incomes in at most one vertex and outgoes from at most one vertex.
Furthermore, according to condition 2 some edges may be infinite on one side if they are not incoming or are not outgoing
for any vertex. Obviously, no edge extends to infinity on both sides because in this case it would not be connected with the
remaining network.

An edge will be called related to a vertex J if it is either incoming in J or outgoing from J .

Definition 2 (Road Network).A road network is a network inwhich edges represent unidirectional roads, with traffic flowing
from ak to bk, and vertices represent junctions.

2.3. A fluid-dynamic model on road networks

The definition of the fluid-dynamic model on a road network is made by prescribing traffic behavior both on edges and
at junctions.

In this subsection, the following assumptions are made:

(A1) ρmax
= 1,

(A2) v depends only on the density ρ,
(A3) f is a strictly concave C2 function,
(A4) f (0) = f (1) = 0.

Assumptions A1–A4 are mild hypotheses which can be partly relaxed (see [1]). In particular, A1 is assumed for the ease
of description, but any value of ρmax can actually be considered and on each road e, for e = 1, . . . ,NE , different values of
ρmax
e will be considered in Section 4.
On each road, the traffic is assumed to be modeled by a hyperbolic system of conservation laws:

∂tρe + ∂xfe(ρe), ρe ∈ Rp, e = 1, . . . ,NE . (2)

In (2) we can have p > 1 for example for multipopulation models. From now on, we will mostly assume p = 1.
The crucial point of modeling traffic behavior at junctions is accomplished by introducing Riemann solvers at vertices.

We sketch here the main features of the model, referring the reader to [1] for all the details.
We briefly recall that, in the context of conservation laws, a Riemann problem is a Cauchy problem equipped with a

piecewise constant initial datum having a single discontinuity. Letting ρL and ρR be the constant values on the left and on
the right of the discontinuity, respectively, the Riemann problem will be denoted by the couple (ρL, ρR).

Let J be a vertex of the network and assume Inc(J) = {1, . . . , n} and Out(J) = {n + 1, . . . , n + m}. Let ρ0 =

(ρ0,1, . . . , ρ0,n+m) be a n + m-uple of constant initial data given on edges related to J .

Definition 3 (Riemann Solver at Vertices). A Riemann solver for the vertex J is a function RS : Rn+m
→ Rn+m that associates

to every initial datum ρ0 ∈ Rn+m a vector ρ̂ ∈ Rn+m such that on each edge Ik, k = 1, . . . , n + m, related to J , the
solution to (2) is given by the waves produced by the Riemann problem (ρ0,i, ρ̂i), i = 1, . . . , n, for incoming edges and
(ρ̂j, ρ0,j), j = n + 1, . . . , n + m, for outgoing edges. The Riemann solver is also asked to satisfy the consistency condition
RS(RS(ρ0)) = RS(ρ0).

To determine a Riemann solver at vertices, the following is assumed:

(A) at each junction some fixed coefficients express preferences of drivers, prescribing how incoming traffic flows into the
outgoing roads;

(B) respecting (A), drivers choices are made in order to maximize the flux.

Rule (A) is imposed introducing for each junction a matrix

A = {aji} ∈ Rm×n, j = n + 1, . . . , n + m, i = 1, . . . , n
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called traffic distribution matrix, whose element aji gives the percentage of drivers that, arriving from the i-th incoming road,
take the j-th outgoing road. As a consequence we have for i = 1, . . . , n and j = n + 1, . . . , n + m

0 ≤ aji ≤ 1,
n+m
j=n+1

aji = 1.

In order to ensure uniqueness of the Riemann solver at vertices, thematrix A has to satisfy the following technical condition.

(C) Let {e1, . . . , en} be the canonical basis of Rn and let e = (1, . . . , 1) ∈ Rn. For every subset V ⊂ Rn let V⊥ be its
orthogonal. For every i = 1, . . . , n let Hi = {ei}⊥, i.e. the coordinate hyperplane orthogonal to ei and, for every j =

n+ 1, . . . , n+m let αj = (aj1, . . . , ajn) ∈ Rn and Hj = {αj}
⊥. Let K be the set of indices k = (k1, . . . , kl), 1 ≤ l ≤ n− 1

such that 0 ≤ k1 < k2 < · · · < kl ≤ n + m and for every k ∈ K set Hk = ∩
l
h=1 Hkl . Then, for every k ∈ K we ask

e ∉ H⊥

k .

As remarked in [1], condition (C) is needed to isolate a unique Riemann solver at junctions. A crucial point is that condition
(C) implies m ≥ n, so that the casem < nwill be treated in a different way.

Existence and uniqueness of a Riemann solver, producing admissible weak solutions to Riemann problems satisfying
rules (A) and (B), as well as conservation of ρ at junctions, is stated for the case m ≥ n in [1, Theorem 5.2.1], whose proof
gives all the details for building ρ̂. Firstly, the maximum fluxes attainable by a single wave on each road, corresponding to
a given initial datum ρ0, are computed. Let us denote by γ max

i (ρ0,i), for i = 1, . . . , n, such maximum fluxes for incoming
roads, and by γ max

j (ρ0,j) those for outgoing roads, for j = n + 1, . . . , n + m. Defining

Ωi = [0, γ max
i (ρ0,i)], i = 1, . . . , n Ωj = [0, γ max

j (ρ0,j)], j = n + 1, . . . , n + m

and

Ω = {γ ∈ Rn
: γ ∈ Ω1 × · · · × Ωn, Aγ ∈ Ωn+1 × · · · × Ωn+m},

all feasible fluxes clearly belong to the closed, convex and not empty set Ω .
It turns out that the incoming fluxes γ̂ = (γ̂1, . . . , γ̂n)whichmaximize the total flux, subject to rule (A), are given by the

solution of the Linear Programming (LP) problem

max
γ∈Ω

eTγ . (3)

Thanks to assumption (C), the solution to problem (3) is unique.
Once γ̂ is obtained, for every i = 1, . . . , n, we choose ρ̂i ∈ [0, 1] such that f (ρ̂i) = γ̂i as in [1, Section 5.2.1]. Afterward

we set

γ̂j =

n
i=1

ajiγ̂i, j = n + 1, . . . , n + m

and we choose ρ̂j ∈ [0, 1] such that f (ρ̂j) = γ̂j. This way, the whole vector ρ̂ is computed and all the needed data for solving
the conservation law on the edges related to vertex J are available.

In the case m < n, as condition (C) is not satisfied, a different approach has to be used. The approach followed here is
sketched in [1] for the special case m = 1, and the more general case of arbitrary m is described in [12], in the context of
packet flows on telecommunication networks. We introduce the vector q ∈ Rn, with


qi = 1, which is a vector of right of

way parameters [1], and the traffic distribution vector a ∈ Rm, with
n+m

j=n+1 aj = 1. The meaning of the vectors is explained
in the following further rules.

(D1) Let F be the amount of cars arriving at the given junction that actually enter the outgoing roads: then, qiF is the amount
of cars arriving from the ith incoming road.

(D2) Let F be as in (D1): then, ajF is the amount of cars entering outgoing road j.

Rules (D1) and (D2) allow the computation of the states ρ̂ as follows. Firstly, compute the maximal flux for the junction
as

γ ∗
= min


n

i=1

γ max
i (ρ0,i),

n+m
j=n+1

γ max
j (ρ0,j)


.

Next, let us consider the line r in Rn given by
γn =

qn
q1

γ1

...

γn =
qn

qn−1
γn−1
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Fig. 1. Case n > m: fictitious road.

representing the set of points corresponding to fluxes with ratios respecting rule (D1). Define the closed and convex set K
in Rn

K = {γ ∈ Rn
: γ ∈ Ω1 × · · · × Ωn, γ1 + · · · + γn = γ ∗

}

giving the set of feasible fluxes on incoming edges, and let P be the intersection between the line r and the hyperplane

γ1 + · · · + γn = γ ∗.

If P ∈ K , the incoming fluxes γ̂ = (γ̂1, . . . , γ̂n) ∈ K are then given by P; otherwise, γ̂ is given by the unique point in K
which minimizes the distance from P . This point is easily found solving a convex Quadratic Programming (QP) problem.

Next, traffic is distributed among the m outgoing roads in a similar manner: recalling rule (D2), we compute the point
Q ∈ Rm whose coordinates are given by γj = ajγ ∗, j = n + 1, . . . , n + m. Then, we set

H =


(γn+1, . . . , γn+m) ∈ Rm

:

n+m
j=n+1

γj = γ ∗, γj ∈ Ωj, j = n + 1, . . . , n + m


.

If Q ∈ H , then the outgoing fluxes are given by Q ; otherwise γ̂ is given by the unique point in H which minimizes the
distance from Q .

Similarly to the case n ≤ m, we will sometimes refer to the two vectors q and a as to traffic distribution vectors. We will
use the term traffic distribution arrays for referring both to matrices and to vectors without the need of distinguishing the
two cases.

As in the case n ≤ m, once the fluxes γ̂i and γ̂j are computed, inversion of f leads to the corresponding densities ρ̂i
and ρ̂j.

Remark 1. The approach followed in the case m < n can be viewed as originated by the introduction of a fictitious road
in the junction, see Fig. 1. In practice, one assumes that all the n incoming roads enter a single fictitious road, and this is
accomplished, using rule (D1), as in the casem = 1 sketched in [1]; then, vehicles coming from the fictitious road enter the
m outgoing roads following (D2).

2.4. Numerical approximation of conservation laws on edges

In this section we describe the numerical scheme used for solving the conservation law (1) on each edge. In the next
subsection we will end summing up, and describing the whole process on all the network.

We choose a global space discretization size 1x and timestep 1t . For each edge e = 1, . . . ,NE we set ne = ⌊
Le
1x⌋ and

1xe =
Le
ne
, being Le the length of edge e. This way we have on each edge a uniform spacing 1xe which is nearly the same for

all edges. Then, we let λe = 1xe/1t . A space–time grid is hence formed on each edge by points (xj, tn) = (j1xe, n1t), j ∈ Z
and n ∈ N. Let ue be any function defined on the space–time grid on the edge e. For the sake of simplicity, we skip the edge
index e in the function u; we set un

j = u(xj, tn) and we let ūn
j denote the cell average over the cell Ij = {x : |x− xj| ≤

1xe
2 } at

time tn.
We assume that the initial datum is assigned on each road of the network, and boundary conditions are assigned on road

extrema which do not enter in/go out of a junction.
We consider here the second order non oscillatory central scheme proposed in [13]. The scheme is based on the

staggered form of Lax–Friederichs scheme. Central differencing provided by this scheme allows a great deal of simplicity
in approximating the conservation law as, unlike upwind schemes, it does not require information about characteristic
speeds. The excessive numerical viscosity introduced by the Lax–Friederichs scheme is compensated by high resolution
interpolants. Accurate choices of numerical slopes in the reconstructionwill provide uswith second order accuracy, whereas
slope limiting will prevent from spurious oscillations.
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In details, let us consider the following piecewise linear approximation of the solution:

u(x, tn) =


j


ūn
j + u′

j


x − xj


χj(x), (4)

where χj(x) is the characteristic function of the cell Ij and u′

j is a suitable numerical approximation of the space derivative
at xj (see later for details).

Evolving in time (4) and then projecting on the space of staggered cell averages, we obtain

ūn+1
j+ 1

2
=

1
2
(ūn

j + ūn
j+1) +

1
8
(u′

j − u′

j+1)1xe −
1

1xe

 tn+1

tn


f (u(xj+1, t)) − f (u(xj, t))


dt. (5)

Under the CFL condition

λe max |f ′(u)| <
1
2

waves emanating by discontinuities in u(x, tn) do not reach interfaces between the staggered control volumes; hence, the
solution remains smooth at such interfaces and the integral in (5) can be approximated by midpoint rule. Thus the scheme
reads

un+1
j+ 1

2
=

1
2
(un

j + un
j+1) +

1
8
(u′

j − u′

j+1)1xe + λe


f

u
n+ 1

2
j


− f


u
n+ 1

2
j+1


. (6)

The intermediate value u
n+ 1

2
j is computed by Taylor expansion:

ū
n+ 1

2
j = ūn

j −
λe

2
f ′

j 1xe, (7)

where again f ′

j is a first order non-oscillatory approximation of the space derivative of f at xj.
As a whole, the numerical method is a predictor–corrector scheme in which (7) is the predictor and (6) is the corrector.
Concerning slopes, we recall that u′

j in (4)–(6) and f ′

j in (7) provide first order approximations of the space derivatives at
xj. Non oscillatory behavior is obtained with the use of slope limiting. In details, we set

u′

j =
1

1xe
MM(θ(uj+1 − uj), uj+1 − uj−1, θ(uj+1 − uj))

where MM denotes the tree terms MinMod nonlinear limiter

MM(x1, x2, x3) =


min |xi| if xi > 0 ∀i or xi < 0 ∀i
0 otherwise

and θ ∈ [1, 2]. A similar definition is adopted for f ′

j .

Remark 2. The scheme here described proposed in [13], can be slightly modified in such a way that staggered cells are not
needed. This new variant of the scheme, described in [14], is actually implemented in our scheme. For the sake of simplicity,
here we limit ourselves to the description of the original staggered scheme.

2.5. Numerical approximation on the network

Once Riemann solvers at junctions are available, a solution of the overall problem is computed as follows.
We start each time step with a cell averaged data on the network. Then, we build Riemann solvers at junctions thus

obtaining boundary conditions for endpoints of edges related to the junctions. Boundary data will be assigned at endpoints
that do notmeet at any junction.We remark that the infinite edges described in Definition 1will be obviously finite in actual
computations, thus such edges will not end at junctions and will require boundary conditions.

Then, on each road, one step of the numerical method is performed on the conservation Eq. (2). After this step, new cell
averages are obtained on the edges, including the first and the last cell of the edges. Thus, at junctions, new Riemann solvers
have to be applied in order to obtain the new boundary conditions for the next time step. The whole procedure is then
repeated until the final time is reached.

3. Atmospheric dispersion modeling

Air dispersion models are useful tools for important and social targets such as air quality and traffic management, urban
planning, data monitoring, pollution forecast, risk analysis, public safety purposes (as for example emergency planning for
accidental chemical releases). Several models and codes were developed for these targets; most of them are simplified
models in order to require a moderate computational effort and to provide realtime solutions.
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In this paper we are interested in the pollutant dispersion in an urban district. In the last twenty years few models have
been developed for this target. SBLINE [15] assumes that the pollutant in each street is due to the contribution of sources
located in the street itself and those located in the surrounding streets. This is taken into account by a Gaussian model,
assuming that the plume of pollutants is transported as if there were no buildings. Similarly, ADMS-Urban [16] provides a
module to compute mean concentration in the regions of the domain where the street canyon effect arises. For each street
canyon, the concentration is computed as the sum of two components: the background concentration due to street canyon
trapping effect and the concentration related to the direct contribution of vehicle emissionswithin the street. The dispersion
of pollutant emitted within the street is modeled by a Gaussian plume.

In this paper we use the urban dispersion model Sirane, that adopts a different approach with respect to ADMS-Urban
and SBLINE models. It is based on the street network concept and on a decomposition of the whole flow into external
atmospheric and urban canopy sub-flows. The Sirane code has been used to compute street level concentration in several
large European cities: Paris, Grenoble, Le Havre, Rouen, Chambery, Lyon [17], Turin,Milan, Florence [18–20]. In the following
we briefly describe the parametrization adopted in Sirane. For a more detailed description of the model we refer the reader
to [21].

Sirane simulates pollutant dispersion emitted from line sources (e.g. traffic emissions) and point sources (e.g. chimneys)
at the district scale, i.e. for length scales ranging from few hundred meters to few kilometers. Therefore, Sirane neglects the
influence of the topography (length scale >100 m) and it models the effects of the details of the building geometry (doors,
chimneys, windows) as a uniformly distributedwall roughness. The building scale (length scale∼10m) is the only explicitly
represented scale.

The code adopts a quasi-steady approximation. The time step length is assumed to be equal to one hour. This choice is
motivated by the spectral gap between the time scale associated to the dynamic of atmospheric turbulence and the time
scale related to the variation of the synoptic meteorological conditions. For each time step, pollutant dispersion is computed
assuming steady conditions and concentration is estimated assuming no contribution of the pollutant emissions emitted
previously. This approach reveals some limits in case of calm wind conditions persisting over several hours, that can induce
a significant accumulation of pollutants over the urban area which is not taken into account by the model.

The model is made up of two independent modules to compute flow and dispersion within the urban canopy and in the
overlying atmospheric boundary layer. In order to compute the mean concentration within each street, Sirane accounts for
three transport mechanisms within the canopy:

• convective mass transfer along the street due to the mean wind along their axis [22];
• convective transport at street intersections [23];
• turbulent transfer across the interface between the street and the overlying atmospheric boundary layer [24].

We describe the first two mechanisms in the next subsection. The third one is described in the Section 3.2.

3.1. Flow and dispersion within the urban canopy

The urban canopy is modeled as a simplified network of connected street segments represented by boxes. The box
dimensions are the street length L, the width W and the height H . The flow within each street is driven by the parallel
component of the external wind and the pollutant is assumed to be uniformly mixed over the volume of the street. The
spatially averaged velocity along the street axis, Ustreet, is evaluated by a balance between the turbulent entrainment at roof
level and the drag at the building walls [22]. This velocity is used in order to estimate the mass balance within each street
and it is computed as function of different parameters:

Ustreet = Ustreet(u∗, ϕ, z0,build,H,W )

where u∗ is the friction velocity of the overlying boundary layer flow, ϕ is the external wind direction with respect to the
street axis, z0,build is the aerodynamic roughness of canyon walls.

The flow patterns within a street intersection are strongly related to the size, orientation and relative distance of the
buildings bordering the streets that form the intersection. Two kinds of intersections are identified. When the street aspect
ratiosW/H are sufficiently high, the intersection is considered a ‘simple’ one and the flow within the intersection is almost
decoupled from that in the external flow. Conversely, for low aspect ratios, in ‘large squares’, the external flow penetrates
deeply into the urban canopy. In order to distinguish these two cases a threshold value for the street aspect ratio is needed:
ifW ≤ 3H the intersection is ‘simple’, otherwise it is considered as ‘open terrain region’.

In an intersection the flux is modeled by taking into account the horizontal air flux from one street to another, and the
vertical air flux between the urban canopy and the external atmosphere. The horizontal air flux is estimated assuming that
the flow dynamics within the intersection is two-dimensional, i.e. that the topology of the streamlines does not depend
on the vertical distance from the ground. The vertical air flux is modeled by a simple balance of the air volumes entering
and leaving the intersection. In particular, vertical flux is nonzero when the air flow rate through the cross sections of the
upwind and downwind streets are different.

The spatially averaged concentration in each street of the district is obtained by a box model computing a balance of
the pollutant fluxes entering and leaving the street volume. Assuming steady state conditions, this mass balance takes into
account several terms. The most important are the pollutant mass rate emitted within the street (line and point sources),
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Fig. 2. City map.

the entering flux of pollutants advected by themean flow along the street axis due to the transfer at the street intersections,
the leaving flux of pollutants advected by the mean flow along the street axis, the turbulent transfer between the street and
the atmosphere. This last flux is assumed to be proportional to the concentration difference

Qturb,street = udWL(Cext − Cstreet),

where Cstreet and Cext are the mean concentrations within and above the street, respectively, and ud is a transfer velocity
based on the standard deviation of the turbulent vertical velocity following the Monin–Obukhov similarity theory.

3.2. Flow and dispersion above the roof level

A reliable description of the atmospheric boundary layer in Sirane is required to determine the characteristics of the
atmospheric flow and turbulence, that are needed to estimate the pollutant dispersion in the external atmospheric flow.
Moreover, they allow us to evaluate the turbulent pollutant fluxes between the urban canopy and overlying atmosphere
and to compute the parameters describing the flow within the canopy. The external boundary layer is modeled using
Monin–Obukhov similarity theory. The flow is assumed homogeneous in the horizontal plane and all the dynamical
parameters are assumed to depend on the vertical coordinate only. The external boundary layer flow model is mainly
inspired by some well assessed meteorological pre-processors [25,26].

The pollutant dispersion phenomena taking place above roof level are simulated by a Gaussian plume model. Plume
reflections at the top of the boundary layer and at roof level are simulated by the introduction of image sources. This
technique requires to locate fictitious sources at the mirror images of the real sources in order to impose no-flux conditions
at the reflecting surfaces [27].

4. Numerical experiments

In this sectionwe present our numerical experiments, obtained (on different traffic scenarios) by coupling network traffic
simulations, performed implementing the traffic model described in Section 2, and the Sirane code.

We have made some experiments on a city model whose map is depicted in Fig. 2 and for which experimental data on
traffic are not available to us. This topology corresponds to a large part of Lyon, France. It consists of 19224 edges and 7587
junctions; length of edges ranges from few meters to 1960 m.
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Fig. 3. Junction example.

Since real data are not available, some strategies were used in order to fix the traffic distribution arrays and some
parameters needed from the models. For a practical and reliable application of the model, tuning of some input parameters
will be needed.

4.1. Setting traffic distribution arrays

Among all possible LWR models, we focused here on the Greenshield model [1], in which one has

v(ρ) = vmax


1 −

ρ

ρmax


. (8)

Here v(ρ) decreases linearly with ρ from its maximum value vmax (attained at ρ = 0) to its lowest value 0 attained when
density assumes its larger value ρmax. The flux function trivially satisfies assumptions A2–A4 of Section 2.3.

The traffic model is linked to the code Sirane, which takes advantage from a Geographic Information System (GIS) to
obtain coordinates, length and width of roads of real cities. Besides these parameters, other information about the traffic
situation in cities under consideration should be prescribed, namely the traffic distribution arrays for all the junctions.

In the following we will describe some rules for assigning traffic distribution arrays. We want to point out that these
rules appear as a suitable way for assigning traffic distribution arrays for tests where experimental data are not known. Few
traffic data are presently available to us for the city of Torino. A preliminary comparison of the results obtained by our rules
with these traffic data gives quite satisfactory results at least for fluxes corresponding to peak hours. A deeper validation of
this model, which is beyond the scope of the present paper and is left to future work, will allow us to finely tune this model
in order to use it for filling possible gaps in available real data, i.e. in real life computations the model will be possibly used
to assign traffic distribution arrays for those junctions for which real data are not available.

At first, let us define the traffic distribution matrix for junctions with n ≤ m. We recall that element aji represents the
percentage of drivers coming from road i who enter road j after crossing the junction. We assume that these percentages
are ruled by the width of outgoing roads, assuming that width gives, at least to drivers’ perception, an indication of road
capacity and, as a consequence, of drivers’ interest in the road.

Furthermore, provided roads’ direction, we want traffic distribution arrays to model a traffic behavior in which most
drivers privilege their present direction of movement, i.e. after the junction they prefer to enter the road with minimal
angle with respect to the incoming road. At the same time, U-turns (or almost-U-turns) are still allowed. Let us consider,
for example, the junction shown in Fig. 3(a): roads 1 and 2 are incoming, whereas roads 3–5 are outgoing. Supposing that
all the roads have the same width, we assume that a large part of drivers arriving from road 1 will proceed entering road 3,
whereas just a few drivers will enter road 5.

Furthermore, in case (b), if all the roads have the same width and if we do not consider at all the angles between the
streets, using only information from road width, we would obtain a matrix A having the form

α α
1 − α 1 − α


, α ∈ [0, 1]

which does not satisfy condition (C) of Section 2.3.
More in detail, we define A as follows: for i = 1, . . . , n and j = n + 1, . . . , n + m the elements aji are given by

aji =
wjpij

n+m
k=n+1

wkpik

,

where wj is the width of the outgoing road j and pij is defined as

pij =


1
2

− ε


(cosβij + 1) + ε

where βij is the angle underlying roads i and j and ε is a small nonzero parameter. The rationale behind this formula is the
following: the more the outgoing road j has the same direction of incoming road i, the more road j is appealing for drivers
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Table 1
Traffic composition (% of vehicles).

Cars Trucks Motorbikes Buses

Conventional/ECE 1504 10.22 1.79 4.49 0.10
Euro 1 5.44 0.96 2.07 0.04
Euro 2 21.18 2.04 1.82 0.10
Euro 3 19.74 2.77 0.89 0.05
Euro 4 25.40 0.88 – 0.003
Euro 5 – – – 0.02

Total 81.99 8.44 9.27 0.31

Table 2
Weighted pollutant emissions factors
(g/km).

NOX VOC CO PM

0.711 1.108 8.630 0.079

coming from road i, whereas if βij is almost π , i.e. essentially an U-turn is made when going from road i to road j, then pij is
small. The nonzero parameter ε still allows some U-turns to be made.

In the case n > m, priorities among incoming roads are set as

qi =
wi

n
k=1

wk

i = 1, . . . , n

and, similarly, the traffic distribution vector for outgoing roads is defined by:

aj =
wj

n+m
k=n+1

wk

, j = n + 1, . . . , n + m.

We remark that in this case information concerning origin of drivers is lost when crossing the junction. This is the reason
why quantities relating incoming and outgoing roads (namely pij) are not used in the definition of q and a.

We also remark that time-dependent traffic distribution matrices can also be considered in order to model, for example,
traffic lights and/or different driver preferences with daily hours.

4.2. Setting vehicle parameters

For the evaluation of pollutants, we used data provided by Copert [28,29], a software for computing air pollutant
emissions from road transport. From this software it is possible to obtain, for each class of vehicles, pollutant emissions
factors for some given pollutants, measured in grams per kilometer of distance covered, (g/km).

Concerning traffic compositions, in our computationswe used the data reported in Table 1, corresponding to the situation
in Torino in 2007. For each type of vehicle, the table report the percentage on the total traffic, distinguishing among different
European emissions standards. The latest European standard emissions available are Euro 4 for cars and trucks, Euro 3 for
motorbikes and Euro 5 for buses.

Since we do not use a multipopulation model, our computations actually do not distinguish among different vehicle
types as far as density computations are concerned. Different emissions are accomplished by first computing the weighted
emissions factors. Let C be the number of different vehicles classes (C = 20 in Table 1) and let pi be the percentage of
vehicles of class i, for i = 1, . . . , C; for a given pollutant P let εP

i be the pollutant emission factor of vehicles of class i: then,
the weighted emission factor for P is

εP
=

C
i=1

piεP
i .

In Table 2 we report the weighted emissions factors computed with our data. After our computations are performed on the
whole network, on each edge we average density both in space and in time. Since the traffic model links density to flux
velocity, we easily obtain the averaged number of kilometers covered by vehicles traveling on the given edge, and, as a
consequence, total emissions for the edge which are then processed by Sirane.

Fixing a mean length for vehicles (we used here: cars 4.0 m, trucks 8.0 m, motorbikes 2.2 m, buses 8.5 m) and following
traffic composition given in Table 1, we may compute the length of the mean weighted vehicle (here Lv = 4.1821 m) and
ρmax can then be computed as ρmax

= d/Lv vehicles/m, where d is a positive integer giving the number of lanes present in
the road.

The maximum velocity vmax is set to vmax = 50 km/h≈14 m/s.
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As initial condition, we set on each edge a constant density, whose value ρ0
e depends, on each edge e = 1, . . . ,NE , on

ρmax
e (namely ρ0

e = 0.15ρmax
e ).

We recall that boundary conditions are needed for edge endpoints which do not correspond to junctions. These may be
left endpoints (i.e. the edge enters in the network) or right endpoints (i.e. the edge exits from the network). In the first case,we
set as boundary condition Dirichlet conditions, with values constant in time still depending on ρmax

e , and also distinguishing
the cases in which these edges correspond to main roads entering the town or to small blind alleys. In the second case (edge
exiting from the network) we set free-flow boundary conditions.

4.3. Implementation details

The algorithm described is easily implementable in a parallel way, both on shared memory architectures (OpenMP) and
on distributed memory architectures (MPI). Indeed, a large part of the computations can be easily identified in two distinct
blocks: computations performed to build Riemann solvers at vertices (NodeSolve procedure) and solution of conservation
law on edges (EdgeSolve procedure). The data exchange between processors/threads only concerns data corresponding
to the first and the last cell on each edge, and we can easily assign some junctions to each processor in NodeSolve, and
some edges to each processor in EdgeSolve. This is the choice we adopted in our implementation in a C code, in which we
used a OpenMP parallelization, achieved by splitting the edges and the junctions among the threads used for computations.

In our implementation LP problems are solved by the GLPK (GNU Linear Programming Kit) package [30] (version 4.47),
a library of ANSI C routines implementing a revised simplex method. QP problems have been solved by QuadProg++ [31]
(version 1.2), a C++ library for Quadratic Programming which implements the Goldfarb–Idnani active-set dual method [32].

4.4. Results

We implemented in our code the following traffic scenarios:

• normal traffic (NT): no restrictions are considered;
• local environmental traffic block (EB): a very large amount of cars is not allowed to enter in a prescribed zone (typically

a central zone of the town);
• cars and trucks are all conforming to Euro 4 specifications (E4).

A few remarks on previous scenarios. For the sake of simplicity, the EB zone is here a ball with a prescribed center and
radius; of course any kind of shape can be assumed. The EB scenario has been implemented by penalizing vehicles from
entering the EB zone through a proper definition of traffic distribution arrays, whereas vehicles already in the zone may
freely travel both inside and outside the zone.

In Euro 4 scenario we assume that all circulating vehicles are conforming to Euro 4 specifications, i.e. all the non
conforming vehicles are replaced with conforming ones, so that the total number of vehicles circulating does not change
with respect to the normal traffic.

For a fair comparison, we started our computations with the same initial and boundary conditions for vehicle densities in
all the three scenarios, except for the EB scenario where, inside the EB zone, we obviously used smaller initial and Dirichlet
boundary conditions. That is coherent with a small amount of cars traveling inside the block zone.

In our simulations we have run the traffic model for a fixed time and the dispersionmodel for a comparable time.We did
not use background pollution distribution in the dispersion model, thus highlighting the pollutant production due to traffic.

In Figs. 4–9 we report the results obtained for the pollutant dispersion computed by Sirane on the basis of the performed
traffic simulations in the three different scenarios, which have been obtained with a space meshsize 1x = 0.5. All figures
refer to PM concentrations, and values in output are measured in µg/m3. In particular, Figs. 4–6 show pollutant dispersion
over almost the whole city. In such figures pollutant dispersion is superimposed on the city map. In Figs. 7–9 details are
given on a part of the city located northeast of the city center. This zone includes both a portion of the city involved by the
environmental traffic block and a portion outside this region.

Comparing Fig. 8 with Figs. 7 and 9 we can clearly see the effect of the Environmental Block measure from the low levels
of PM concentration in the bottom-left corner. Also the maximum values of PM concentrations corresponding to EB and E4
measures are lower than the values reached considering normal traffic. We notice that even if EB clearly yields very small
values of pollutants inside the block, as a whole the E4 measure seems to be more effective with respect to the reduction of
maximumvalues. In Tables 3–5we report, for the three traffic scenarios here considered, somepunctualmean concentration
values computed by the dispersion model at given points called receptors. These tables report, for nine fixed receptors, the
mean values computed for all the pollutants considered in our simulations (NO, NO2,O3 and PM, all measured in µg/m3).
For each receptor we also report x and y UTM coordinates inside the city. The points marked with Id = 0, . . . , 5 are located
on the same horizontal axis, starting from the center of the city and moving toward East; the receptor with Id = 0 is close
both to the center of the city and to the center of the EB region, receptor 1 is inside the EB but not far from its boundary,
receptor 2 is very close to the boundary, receptor 3 is immediately outside the EB region, receptors 4 and 5 are far from the
EB region. Receptors 6–8 are located northeast of the center of the EB region, receptor 6 being outside the region, receptor
7 on the boundary and receptor 8 inside the EB zone. Comparing the concentrations in Tables 3 and 4 we can clearly see
the reduction due to the traffic block inside the EB region. This reduction seems to have no effect at all on zones outside
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Fig. 4. Normal traffic scenario, PM concentrations (µg/m3).

Table 3
Normal traffic scenario: mean concentrations (µg/m3).

Id x y C̄NO2 C̄NO C̄O3 C̄PM

0 643580.0 5068563.0 209.45 52.21 11.07 36.42
1 645200.0 5068563.0 417.28 74.85 15.38 61.16
2 645800.0 5068563.0 249.41 49.68 13.85 38.04
3 646000.0 5068563.0 334.20 60.28 15.30 48.72
4 647000.0 5068563.0 216.55 43.75 13.66 33.15
5 649000.0 5068563.0 144.98 29.89 13.38 24.24
6 646393.0 5070622.0 254.46 48.53 14.47 38.25
7 645463.0 5069000.0 268.67 52.64 14.08 40.80
8 642268.0 5070180.0 327.80 58.22 15.54 47.73

Table 4
Environmental block scenario: mean concentrations (µg/m3).

Id x y C̄NO2 C̄NO C̄O3 C̄PM

0 643580.0 5068563.0 68.21 32.78 5.74 18.48
1 645200.0 5068563.0 129.68 38.73 9.24 25.17
2 645800.0 5068563.0 231.15 47.38 13.46 35.75
3 646000.0 5068563.0 327.69 59.49 15.20 47.91
4 647000.0 5068563.0 216.53 43.75 13.66 33.14
5 649000.0 5068563.0 144.98 29.89 13.38 24.24
6 646393.0 5070622.0 252.94 48.34 14.44 38.06
7 645463.0 5069000.0 159.63 38.67 11.39 27.11
8 642268.0 5070180.0 247.09 48.30 14.12 37.66

the region. Finally, it is not surprising that E4 measure yields a good reduction of the pollutant in all the city without the
need of traffic reduction, but we want to stress that, if real data are available, the procedure here adopted may be used to
quantify the effective impact on air quality of this traffic control strategy.
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Fig. 5. Environmental block scenario, PM concentrations (µg/m3).

Table 5
Euro 4 scenario: mean concentrations (µg/m3).

Id x y C̄NO2 C̄NO C̄O3 C̄PM

0 643580.0 5068563.0 98.49 37.25 7.30 31.35
1 645200.0 5068563.0 194.93 47.44 11.34 51.15
2 645800.0 5068563.0 115.68 32.11 9.94 31.95
3 646000.0 5068563.0 155.19 37.70 11.36 40.63
4 647000.0 5068563.0 100.01 28.13 9.81 27.82
5 649000.0 5068563.0 65.67 18.53 9.78 20.57
6 646393.0 5070622.0 117.61 30.64 10.59 32.02
7 645463.0 5069000.0 124.75 33.93 10.15 34.26
8 642268.0 5070180.0 151.92 36.02 11.64 39.77

Table 6
Normal traffic scenario, mean concentrations (µg/m3), different mesh sizes.

Id 1x = 1 1x = 2
C̄NO2 C̄NO C̄O3 C̄PM C̄NO2 C̄NO C̄O3 C̄PM

0 210.33 52.32 11.09 36.54 212.47 52.60 11.15 36.80
1 418.47 74.99 15.40 61.31 421.12 75.31 15.43 61.64
2 250.30 49.79 13.87 38.15 252.51 50.07 13.92 38.42
3 335.36 60.41 15.32 48.87 338.13 60.75 15.36 49.21
4 217.53 43.88 13.68 33.27 220.48 44.25 13.75 33.64
5 145.20 29.92 13.39 24.27 145.71 29.99 13.41 24.33
6 255.37 48.64 14.49 38.36 257.50 48.90 14.53 38.63
7 269.59 52.75 14.10 40.92 271.88 53.03 14.15 41.20
8 329.20 58.39 15.56 47.90 334.44 59.02 15.64 48.55

In Tables 6 and 7 we report, for normal traffic and environmental block scenarios, the mean concentration of pollutants
predicted at the same receptors of the previous tables, but with traffic flow simulations performed with a larger space
meshsize, namely 1x = 1 and 1x = 2 instead of 1x = 0.5. A similar behavior is obtained for the E4 scenario and the
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Fig. 6. Euro 4 scenario, PM concentrations (µg/m3).

Fig. 7. Normal traffic scenario, detail of PM concentrations (µg/m3).

corresponding table is not reported here. As can be seen, the overall computation is moderately affected by this change
in the meshsize, as the differences in general are smaller than 1%, except for just one receptor in the BA case, for which
differences reach the order of 5%.

We close this section with a brief analysis of the computational costs of our code. In Table 8 we report, for different
thread numbers, the computational times spent in the main activities of the code. The computations are performed on a bi-
processor computer endowed with two processors Intel Xeon E5520, 2.27 GHz (2009), 4 cores each. Information in Table 8
refers to the simulation of traffic flow (normal traffic scenario) spanning 3600 s, obtained with 1x = 2, followed by a
pollutant dispersion stage.
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Fig. 8. Environmental block scenario, detail of PM concentrations (µg/m3).

Fig. 9. Euro 4 scenario, detail of PM concentrations (µg/m3).

Table 7
Environmental block scenario, mean concentrations (µg/m3), different mesh sizes.

Id 1x = 1 1x = 2
C̄NO2 C̄NO C̄O3 C̄PM C̄NO2 C̄NO C̄O3 C̄PM

0 68.47 32.82 5.76 18.51 68.99 32.90 5.79 18.58
1 128.85 38.61 9.21 25.07 129.77 38.74 9.24 25.18
2 243.73 48.97 13.73 37.33 246.14 49.27 13.79 37.63
3 334.29 60.29 15.30 48.73 337.16 60.63 15.34 49.09
4 217.51 43.88 13.68 33.27 220.46 44.25 13.75 33.64
5 145.20 29.92 13.39 24.27 145.71 29.99 13.41 24.33
6 253.95 48.46 14.46 38.18 256.09 48.73 14.50 38.45
7 157.79 38.43 11.33 26.88 159.22 38.62 11.38 27.06
8 244.32 47.96 14.06 37.32 246.52 48.23 14.10 37.59

We isolated the following main activities:

• junctions solve (NodeSolve): solution of the LP or QP problems at the junctions;
• edges solve (EdgeSolve): solution of the conservation law on the edges;
• dispersion (Sirane): all the activities concerning the dispersion process over the urban canopy.

In Table 8 we also report the total execution time, including time spent in the initialization phase.
As can be seen from Table 8, in our code, except for the case of just one thread, with 1x = 2 approximately 63% of the

computing time required by traffic simulations is spent in NodeSolve, whereas approximately 37% is spent in EdgeSolve.
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Table 8
Computational times (s) of the main blocks of the code.

# threads NodeSolve EdgeSolve Sirane Total

1 5920 4540 34 10496
2 4217 2532 23 6773
4 2616 1506 15 4138
6 1758 1010 13 2782
8 1692 942 12 2647

12 1481 900 12 2394

As a consequence, the use of more complex traffic models, such as for example second order models or phase transition
models [8], would affect only to a moderate extent the computing time and we do not expect the overall computation
suffers too much from the use of such models.

Let us also point out that NodeSolve computing time depends on 1x only via the number of time steps performed (1t
is linked to 1x via the CFL condition), whereas in EdgeSolve also the complexity of each step depends on 1x. So, if 1x is
increased, EdgeSolve computing time decreases faster than NodeSolve, and the percentage of computing time spent in
EdgeSolve becomes smaller.

We remark that no effort has been spent to optimize parallelization of the code, so computing times reported in Table 8
have to be intended as a qualitative information, nevertheless confirming that the required computing time on a network
involving a whole city may easily be lower than the actual time interval simulated. A hybrid MPI-OpenMP parallelization
can largely take advantage from the increased number of processors involved in the computation and reduce the computing
times.

5. Conclusions and perspectives

We have performed traffic simulations on a traffic network topology corresponding to a large part of a model city. We
have coupled these simulations with a dispersion model implemented in the code Sirane. These results prove that a real
traffic simulation with the approach described here is possible, and that computing time on a recent desktop computer may
be smaller than actual time simulated. Once different traffic scenarios are modeled, this coupling allows to predict their
effects on air quality.

The simulations here presented do not aim at providing quantitative results for the different traffic countermeasures, but
they aim at proving the viability of the model here proposed to provide quantitative data if a suitable amount of real traffic
and geometry data are available.

In this paper we have introduced some assumptions that should be validated with real local traffic data and network
topology. Many of the strategies introduced here to compute some needed parameters can be used to fulfill unavailable
data after a suitable tuning process. For a reliable quantitative application of these models, we are planning to perform a
validation and a tuning of the model for approximating traffic distribution arrays. To this aim, a large amount of traffic data
is needed and its collection is in progress.
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