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A linear analysis of the transient evolution of small perturbations in the supercritical FSC cross-flow
boundary layer is presented. We used the classical method based on the temporal evolution of individual
three-dimensional travelling waves subject to near-optimal initial conditions and considered an
extended portion of the parameter space. Our parametrization included the wave-number, the
wave-angle, the cross-flow angle, the Hartree parameter and the Reynolds number. Special focus was
given to the role played by the waveangle in inducing very steep initial transient growths in waves that

Ié?; Vf‘:g;‘iS:la ers proved to be stable in the long term.
Cross—ﬂos\’/v v We found that the angular distribution of the asymptotically unstable waves and of the waves that

show a transient growth depends greatly on the value of the cross flow angle and wave-angle as well
as on the sign of the Hartree parameter, but depend much less on the Reynolds number. In the case of
the decelerated boundary layer, at sufficiently short wavelengths, transient growths become much more
rapid than the initial growth of the unstable waves. In all cases of transient growth, pressure
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perturbations at the wall are not synchronous with the kinetic energy of the perturbation.
We present a comparison with the sub-critical results obtained by Breuer and Kuraishi (1994)
(Re = 500, sweep angle of t/4) for the same full range of the obliquity angle here considered (7 radiants).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The cross flow boundary layer is one of the most important
boundary layers in engineering applications (aerospace, mechani-
cal, wind...), cf. the recent review by Saric et al. (2003) and the
monographs Schmid and Henningson (2001), Criminale et al.
(2003). Examples of cross flow boundary layer include flow over a
swept back air plane wing, rotating discs, cones and spheres and
cones at an angle of attack. It is important to understand the dynam-
ics of this flow and to learn how to prevent the possibility of break-
down to turbulence. Furthermore, unlike the well-known Blasius
boundary layer, breakdown is far more likely in this flow. For exam-
ple, it can be unstable inviscidly as well as that caused by the influ-
ence of viscosity due to the existence of an inflexion point in the
mean profile (Gregory et al., 1955). This work presents a study in
an extended portion of the parameter space of the stability of the
cross flow boundary layer in supercritical conditions with three-
dimensional perturbations based not only on the modal approach
but also examining the temporal evolution of the perturbation. Flow
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due to an infinite rotating discs often has been used in literature as
an archetypal example of three-dimensional boundary layers (Saric
et al., 2003). Lingwood (1995) found that in this flow a transition
from local linear convective to radial absolute instability can occur.
This inspired many authors and led to the investigation of the fully
non linear regime (see, among others Pier (2003), Healy (2006)).
The swept-wing boundary layer is genuinely three-dimensional,
which makes its exploration very complex. Despite this complexity,
Lingwood’s approach motivated studies on the possibility of abso-
lute instability operating in the swept-wing boundary layer. In par-
ticular, it was found (Lingwood, 1997) that close to the attachment
line there is chordwise absolute instability above a critical spanwise
Reynolds number of about 545. Taylor and Peake (1998) extended
the study by Lingwood and searched for pinch points in the cross
flow direction for a larger range of flow angles and pressure gradi-
ents. Although these crossflow-induced pinch points do not consti-
tute an absolute instability, as there is no concomitant pinch
occurring in the streamwise wavenumber plane, they can be used
to find the maximum local growth rate contained in a wavepacket
travelling in any given direction. Recently, these findings were
confirmed by Koch (2002) in a work dedicated to the study of the
secondary instability of stationary cross-flow vortices. In general,
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a rigorous proof that the absolute instability cannot occur in a
swept-wing boundary layer does not yet exist.

The three-dimensional boundary layer has been also investi-
gated in the context of receptivity and transient optimal perturba-
tions. Most studies of optimal disturbances in wall-bounded flows
(Luchini and Bottaro, 1998; Luchini, 2000) deal with temporal
growth of perturbations. For example, Corbett and Bottaro (2001)
performed a local stability analysis using a variational technique
in the temporal framework. They found that the three-dimensional
boundary layer shows significantly greater capacity for algebraic
growth than the two-dimensional boundary layer with the same
base flow parameters. Moreover, they proved that the cross flow
angle that maximizes the transient growth is nearly equal to 49°.
Schrader et al. (2009) and Tempelmann et al. (2010) studied the
receptivity problem for spatial growing perturbation considering
vortical free stream modes, free stream turbulence and surface
roughness. They found that steady cross-flow instabilities to dom-
inate for low-level free stream disturbance. Malik et al. (1994,
1999) investigate the secondary instability characteristics of
swept-wing boundary and found that three types of secondary dis-
turbances can be distinguished. The first two were high-frequency
disturbances with high growth rates and maxima located away
from the wall. Their origin was related to regions of high spanwise
shear (type I) and vertical shear (type II). The third type is a low-
frequency disturbance with smaller growth rates and maxima clo-
ser to the wall representing a primary travelling crossflow distur-
bances being modulated by the stationary crossflow vortex.

This work treats the linear perturbation problem and demon-
strates the importance of the results during the transient period
as well the long time behaviour. Near-optimal perturbations which
are localized within the boundary layer thickness are used as initial
conditions (Lasseigne et al., 1999; Corbett and Bottaro, 2001). We
also have good agreement with results obtained by using impulsive
forcing (Taylor and Peake, 1998) or least-damped Orr-Sommerfeld
eigenfunctions as initial conditions (Breuer and Kuraishi, 1994). The
extreme simplicity of this method allows for an extended study of
the parameter space. In particular, special attention was given to
the role played by the direction of the perturbation both in the tran-
sient and in the asymptotic regime. In sub-critical conditions, a sim-
ilar analysis was performed by Breuer and Kuraishi (1994). They
observed that, when the external flow is accelerated, the distur-
bances which have greater transient growth are those that propa-
gate in the crossflow direction. Vice versa, if the external flow is
decelerated, the maximum transient growth is obtained with dis-
turbances propagating in the opposite cross-flow direction.

With this paper we wish to extend the study of Breuer and
Kuraishi by considering supercritical conditions. The pressure
perturbation during the transient is also investigated and in partic-
ular is investigated when the maximum amplification factor for the
pressure measured at the wall come in advance or in delay with
respect to the maximum amplification of the energy.

This paper is organized as follow. The physical problem is
described in Section 2. Section 2.1 is dedicated to the mean
three-dimensional flow, Section 2.2 to the definition of the initial
value problem and modal analysis. Sections 3 and 4 present tran-
sient dynamics and the role of the perturbation inclination and
the long term behaviour, respectively. Section 5 gives information
on the wall pressure transient. Conclusions follow in Section 6.

2. Problem formulation
2.1. Mean flow

As customary, we use the parallel flow approximation to
describe the linear evolution of small amplitude disturbances.

When the parallel flow assumption holds, the base flow compo-
nents only vary with the wall normal coordinate. The assumption
behind this approach is that the mean boundary layer flow quanti-
ties vary slowly in the streamwise direction compared to the dis-
turbance quantities. In general, to account for nonparallel effects
in diverging flows, the spatial formulation of the governing pertur-
bative equations is used, see for example the multiple scale analy-
sis carried out by El-Hady (1991) who considers the nonparallel
effects for subsonic and supersonic boundary layers. A specific
application to the base flow analysed in this paper (the Falkner-
Skan-Cooke boundary layer, with a displacement thickness Rey-
nolds number of 490) can be found in Hogberg and Henningson
(1998) where, by means of linear local eigenvalue calculations
compared to spatial direct numerical simulations, it is showed that
nonparallel effects induce a raise in the growth rate of the order of
the 13% along the streamwise direction.

In this paper, nonparallels effect are disregarded. We thus
assume that locally we can represent the boundary layer as a paral-
lel shear flow subject to small pertubations in the form of travelling
waves and define two local coordinate systems as shown in Fig. 1(a)
and (b). On an infinite swept wing, taken any point x* lying on the
wing, we can always distinguish the chordwise direction, x., from
the streamline direction, x. We use the coordinate system based
on the streamline direction. The y direction is normal to the wall
and the z direction is normal to both x and y directions. A good
approximation of the velocity profiles in a three dimensional
boundary layer is given by the family of similarity solutions known
as Falkner-Skan-Cooke (FSC) solutions (Cooke, 1950; Rosenhead,
1963). There are two parameters in the FSC formulation that allow
the magnitude of the cross flow to be varied: B, the dimensionless
pressure gradient, or Hartree parameter, and 0 the crossflow angle
between the streamwise direction and the chordwise direction, see
Fig. 1(c). The mean vertical velocity is assumed to be zero.

It should be recalled that with this approximation the external
flow is accelerating as the external pressure decreases (8 > 0) and
one can talk of boundary layer in a favourable pressure gradient
and vice versa.

Fig. 1(b) and (c) shows the velocity profiles in this reference
frame. As is customary, variables are non-dimensionalized with
respect to U,, the free-stream velocity at the boundary layer edge,
and with respect to the streamwise displacement thickness,
5" = [;7(1 —U)dy. The Reynolds number is then defined as
Re = U, /v.

2.2. Initial-value problem and modal analysis

The transient as well as the long term behaviours of arbitrary
three-dimensional disturbances acting on the FSC cross-flow
boundary layer are investigated. We have considered the velocity
vorticity formulation and have Fourier transformed the governing
disturbance equations in the streamwise and spanwise directions
only, using respectively the wavenumbers o and 7). This leads to
generalized forms of the Orr-Sommerfeld and Squire equations:

2
(24 i(aU +yW)) (#_ kZ) b—i(al" +yW") o — L (;y—_ kZ) b=0,
[3+i0U+ W) - (Z- 1)y =W’ -0,

(1)

where k* = o2 + y? is the polar wavenumber, # and @, are respec-
tively the transformed perturbation vertical velocity and vorticity,
U, U, U",W,W'and W” indicate the base flow streamwise and span-
wise profiles and their derivatives in the y direction. The boundary
conditions require that 7 = ¥/ = @, = 0 at the wall and at infinity.

On these equations we have performed both a modal analysis
and an initial value problem, which hereafter will be indicated
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Fig. 1. Scheme: (a) Chordwise (x.,y,z.) and streamline (x,y,z) reference frame. The cross flow angle, 0, is represented in green; the perturbation propagation is represented in
blue. k is the polar wavenumber and ¢ is the wave-angle. The attachment line is shown as a dashed line, the external streamline is indicated by the dotted line. (b) 3D of the
boundary layer velocity profiles, U(y) and W(y). (c) Solutions of the Falkner Skan Cooke flow. Effect of changing the parameters: § = —0.1988,1 and 6 = 7/6, /4, /3. Note
that W(y; 8, 0)  sin 0 cos 0 (Cooke, 1950), as a consequence W(y; 8,0 = mt/3) = W(y; 8,0 = m/6). (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

with the abbreviation IVP. In the modal analysis to compute the
eigenvalues, o = g, + io;, of Eq. (1) a finite differences scheme of
the fourth order of accuracy is used. In the IVP we have adopted
the method of lines (Scarsoglio et al., 2009; Scarsoglio et al.,
2010; Lasseigne et al., 1999). This approach offers an alternative
means for which arbitrary initial conditions can be specified and
the full temporal behaviour, including both early-time transients
and the long-term asymptotics, can be observed.

For the temporal evolution, to measure the growth of the
perturbations we define the kinetic energy density:

1 /% /. . R
e(tik. . f.0.Re) =5 [ (1P + 10 + WP’ )ay, @)

where y; is the computational limit of the domain, while
u(y,t;k, ¢, B,0,Re), v(y, t;k,¢,p,0,Re) and w(y,t;k, $,B,0,Re) are
the transformed velocity components of the perturbation. ¢ is the
wave-angle, defined as the angle between the streamwise and the
perturbation directions, ¢ = arctan(y/«), see Fig. 1(a) and (b). y; is
defined so that the numerical solutions are insensitive to further
extensions of the computational domain size. We also introduce
the amplification factor G, as the kinetic energy normalized with
respect to its initial value:

G(t;k, ¢, B,0,Re) = e(t; k, ¢, B,0,Re)/e(0; k, ¢, B, 0, Re). (3)

Assuming that the temporal asymptotic behaviour of the linear
perturbations is exponential, the temporal growth rate, r, that cor-
responds to the imaginary part of the modal analysis eigenvalue,
can be defined as

r(t;k, ¢, B,0,Re) = log(e(t; k, ¢, B, 0,Re))/(2t). (4)

The frequency, o, of the perturbation is defined as the temporal
derivative of the wave phase, ¢, at a specific spatial point along the
y direction. The wrapped phase, ¢,, is a discontinuous function of ¢
defined in [—7, +7], while the unwrapped phase, ¢, is a continuous
function obtained by introducing a sequence of 27 shifts on the
phase values in correspondence to the periodical discontinuities.
The frequency (Whitham, 1974; Scarsoglio et al., 2009) is thus

w(t;yo’ k» ¢7ﬁ’ 07Re) = |d(p(t7.VO7 k7 ¢’ ﬁv 07 Re)‘/dt (5)

This corresponds to the real part of the modal analysis
eigenvalue. As reference, we use the transversal observation point
Yo =1,1e.y,=17"

It should be noted that when r and @ become constant, the
asymptotic state is reached. In the asymptotic limit, in respect to

the modal analysis, the IVP can only select the mode which has
the largest growth rate.

We have considered supercritical flows (Re = 1000-7000) sub-
ject to both positive and negative external pressure gradients
(B=-0.1988,1). The cross flow angle, 0, is taken in the range
[/12,11m/25]. Concerning the perturbations, we vary both the
polar wavenumber, k, and the wave-angle ¢. For the IVP, as initial
condition, we use a Gaussian distribution for the velocity field,
while the vorticity is initially zero, namely

v(0) =y’exp(-y*),  @y(0)=0. (6)

We recall that y is normalized on the displacement thickness
based on the streamwise velocity, see Section 2.1. However, in
order to make some comparison with literature data (Breuer and
Kuraishi, 1994), in Section 3 we have performed simulations with
different initial condition at Re = 500 and 8 = 0.2.

To validate the numerical procedure, solutions obtained by both
the modal approach and the IVP are compared with each other and
with data in literature; cf. Fig. 2. In both cases, Fig. 2(a) shows good
agreement with the results of Taylor and Peake (1998) (y = 0.35+
i0.125, Fig. 5 therein). Since we have not found any discrete and
continuous spectra for the cross flow boundary layer to compare
with, in Fig. 2(b) we have considered as base flow the Blasius
boundary layer and contrasted our results with Mack (1976).

3. Transient dynamics and role of the obliquity angle

As mentioned in the introduction we want to extend the results
of Breuer and Kuraishi (1994) to the case of supercritical flow. As
initial condition they use the least-damped Orr-Sommerfeld
eigenfunction for the velocity field and set the vertical vorticity
equal to zero. See in Fig. 3(a) the comparison between their initial
condition extending outside the boundary layer and the initial con-
dition defined in Eq. (6). Breuer and Kuraishi consider stable waves
and found that transient growth can be observed in a narrow range
of wavenumbers (k € [0.2,1.1]). Within this region, they observe
that for positive f, positive values of ¢ show a greater transient
growth than those with negative values, see Fig. 3(c), and the peak
value is achieved for an obliquity angle of about 80° (9/20m). For
negative value of g, the opposite is true and the peak value is
reached for an obliquity angle of about —80°.

To further validate our simulations we have done some simula-
tion using their initial condition, as done also by Corbett and
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Fig. 2. Spectra of eigenvalues of the Orr-Sommerfeld equation. Comparison of different numerical methods: 4th order finite differences scheme (blue squares); initial value
problem (cyan circles); literature data (red triangles). (a) Cross flow boundary layer Re = 1000, = 1,0 = /4, = 0.01,7 = 0.35, V Taylor and Peake (1998), same parameters
but complex spanwise wavenumber (7 = 0.35 + i0.125). (b) Blasius boundary layer flow, Re = 998,k = 0.308, ¢ = 0, V Mack (1976). Please note that with our approach the
continuous part of the spectrum is discretely approximated. The red line represents the analytical solution obtained by taking # and #’ bounded for |y| — oco. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Comparison between the current study and Breuer and Kuraishi (BK94). (a) Their (red) and our (black) initial condition profile. Vertical dash-dotted lines indicate the
displacement thickness and the boundary layer width. (b-c) Numerical results at Re = 500, 8 = 0.2 and 0 = 1/4. Red circles indicate results from BK94, green triangles show
results by Corbet and Bottaro (CB0O1), blue squares are the reproduction of results in BK94 made with our numerical procedure using their initial condition, black asterisks are
the transient growths obtained by the initial condition Eq. (6). (b) Maximum of the amplification factor as a function of the spanwise wavenumer with o = 0.1 and initial
condition as in BK94. (¢) Maximum of the amplification factor as a function of the the obliquity angle at k = 0.5. Results in CBO1 are obtained at 0 = 48.8 using an optimal
initial condition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Bottaro (2001) (see Fig. 3 therein), getting a very good agreement,
see blue squares in Fig. 3(b) and (c). In Fig. 3(c), the transient
growth obtained with the initial condition (6) is again contrasted
with Breuer and Kuraishi results. We also have a point of compar-
ison with an optimal perturbation at a similar sweep angle (48.8°)
obtained by Corbet and Bottaro. It should be noted that according
to Lasseigne et al. (1999) and Corbett and Bottaro (2001), our kind
of initial condition fully confined within the boundary layer pro-
motes the initial energy gain. However, in this study we are not
focusing on the use of optimal initial conditions, but we simply
wish to describe how in supercritical condition the obliquity of
arbitrary perturbation can influence its evolution.

Fig. 4 shows the temporal evolution of the amplification factor
for perturbation with different obliquity angles at the supercritical
Reynolds number of 5000. Fixing the wavenumber, when the
external flow is accelerated, the growth rate increases with the
positive wave-angle up to ¢ = 5/12m and then slightly decreases,
see Fig. 4(a), while for negative angles the increase is monotonic,
see Fig. 4(d). One can also note that in case of transient growth
the maximum of G is monotonically increasing with the modulus
of ¢. When the external flow is decelerated a rather general rule
can be found. When considering positive angles of obliquity,
Fig. 4(b) and (c), k = 0.4) highlights a rich and, for certain aspects,
counter-intuitive scenario on the role of the perturbation direction.
We see in fact that the waves with small obliquity together with
the orthogonal waves are unstable but a range of oblique waves

in between are not. Usually, in 2D shear flows, if one sees instabil-
ity in the longitudinal direction, one then sees a progressive ten-
dency to stability moving toward the orthogonal direction.
Instead, here, intermediate angles have an intense initial growth
and then become stable. When considering negative angles of
obliquity, Fig. 4(e) and (f), we see that the waves do not present
significant transient growth and are all unstable. It should be noted
that for the cases in panels (a—c) in Fig. 4, the polar wavenumber
vector of perturbations beyond ¢ = /3 has negative chordwise
component (i.e. 0 + ¢ > 1/2). We can introduce the phase velocity,
defined as C = (w/k)f(, where K is the unitary vector in the k direc-
tion, and we can observe that the travelling waves with a phase
velocity propagating toward the attachment line of the wing are
unstable for =1 and are transiently growing for g = —0.1988.
However the energy of the perturbations is transported by the
group velocity, v, = (dw/do, dw/dy), that propagates in the posi-
tive chordwise direction (see for example the values reported in
Table 1).

4. Long-term behaviour

Regarding the influence of the wave-angle on the long-term
behaviour, the best way to study it is by means of the modal
analysis. In fact, considering the large number of parameters
involved, with the IVP the knowledge of the final growth rate of
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Fig. 4. Temporal evolution of the amplification factor, G(t) for perturbations with different obliquity angles, ¢ = 0, /12, /6, /4, 7/3,57/12, /2 at Re = 5000 and 0 = 7/6.
Left panel = 1, middle and right panels g = —0.1988. Panels (a, b, d and e) k = 0.2, panels (c and f) k = 0.4
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Fig. 5. Temporal evolution of the amplification factor growth, dG(t)/dt for perturbations with different obliquity angles, ¢ =0,7/12,7/6,n/4,7/3,5n/12, /2 at
Re = 5000, § = —0.1988 and k = 0.4. Panel (a), 0 = ©/6. Panel (b), 0 = m/4. Panel (c), 0 = ©/3.

Table 1

Examples of group velocity at the temporal asymptote: variation with the central
wavenumber of the wave packet kq. FSC boundary layer with Hartree parameter 1 and
—0.1988 and Re = 5000, 0 = m/4, ¢ = 57/12. The increment Ak is 0.002.

p=1

ko Vg, = dw/do vg, = dw/dy
0.02 0.2994 0.0802
0.04 0.2855 0.0765
0.2 0.3249 0.0871
0.4 0.4007 0.1074
12 0.9992 0.2677
14 0.9995 0.2678
B =-0.1988

0.02 0.4841 0.1297
0.04 0.4331 0.1161
0.2 1.0320 0.2765
0.4 1.0316 0.2764
1.2 1.0366 0.2778
14 1.0455 0.2801

a perturbation would require a large computational effort and a
large memory space to store the temporal results (there are simu-
lations that can last up to 10° time scales). In Fig. 6 the growth rate
is shown for different combination of obliquity angle, pressure gra-
dient and cross-flow angle and two different wavenumbers taken
in the range of the most unstable one. r is computed as the imag-
inary part of the least damped eigenvalue in the discrete spectrum
Taylor and Peake (1998) have also investigated the combined effect
of B and 6. Considering wavenumbers supporting pinch points,
they found that asymptotically the perturbations acting on an
adverse pressure gradient base flow are more unstable at lower
cross flow angles, while for negative pressure gradient the opposite
is true. Our results are completely in agreement with their
observations.

Summarizing the situation shown in Fig. 6, by changing the sign
of Hartree’s parameter, the sign of the growth rate changes. A con-
centration of the growth factor values that become nearly constant
in the range [-7/3, /3] is observed for the accelerated boundary
layer at k=0.4, see Fig. 6(c). A less intense similar trend is
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Fig. 6. Growth rate as a function of the obliquity angle for different cross flow angles. Circle, triangles and squares are values computed by the IVP and reported here to

further validate the numerical results.
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Fig. 7. ¢, and ¢4, obliquity angle for which the growth rate reaches respectively its minimum negative value and its maximum positive value, as a function of the base
flow and the perturbation parameters. Solid lines 8 = 1, dashed lines = —0.1988. Panel (a), dependency on the cross flow angle at Re = 5000, k = 0.2. Panel (b), dependency

on k at Re = 5000, 0 = 7/4. Panel (c), trends with Re in the case k = 0.2,0 = /4.

observed in Fig. 6(d) for the same configuration with a positive
pressure gradient.

In Fig. 7 we describe the variations of the obliquity angles for
which the growth rate reaches its minimum negative value, ¢,
and its maximum positive value, ¢,,. These angles are slightly
decreasing with the cross flow angle, Fig. 7(a). They are almost con-
stant with the Reynold number, Fig. 7(c), which confirms Lingwood
(1997). The behaviour with the wavenumber in the range
[0.02 — 1] is a bit more complex as shown in Fig. 7(b). When the
external pressure gradient is positive (dashed lines) ¢,q and ¢,
are general decreasing function of the wavenumber. For =1
(solid lines), both ¢,,;, and ¢, present a local mild minimum
where the waves are long (k ~ 0.1). Furthermore ¢,,;,, has a local
maximum at k = 0.4.

5. Perturbed pressure transient

In literature, as regards the perturbed pressure field, effects
associated with the pressure gradient on the outside are mainly

considered. For example, the effects on the growth rate and prop-
agation of turbulent spots on the wall (Seifert and Wygnanski,
1995). Little is found on the characteristics of the pressure field
within the same layer and in particular on the wall. For this reason
we analysed the evolution of the perturbed pressure at the wall
and found a behaviour that is not easily predictable by the ampli-
fication factor evolution. The pressure field is computed by the
Poisson equation, Ap = —ik(cos(¢p)U’ + sin(¢)W')?, with boundary
conditions p(y — oo) =0 p'(y =0) = #"(y = 0)/Re. As in the previ-
ous section, we are primarily interested in the role of the obliquity
angle. For this purpose we define the equivalent of the amplifica-
tion factor for the pressure:

P=Ip(y=0,t)|/|p(y = 0,t =0), )

that we call pressure amplification. We consider only stable waves
that have a transient energy growth. As expected, the pressure field
is also initially amplified. This transient growth does not follow the
amplification factor transient growth. This is illustrated in
Fig. 8. Fig. 8(a) and (b) show the time evolution of the pressure
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Fig. 8. Amplification factor and the pressure transients, Re = 5000, 0 = 7/4, Top panels § = 1, bottom panel = —0.1988. Left panels: examples of transient for P (Eq. (7)) and
G,k = 0.4, ¢ = m/6. Panels (c-f) transient of stable perturbations. Blue circles: maximum of the pressure amplification; red triangles: maximum of the amplification factor;
black squares: difference between the times where the perturbation reaches Gpq and Pq4. Panels (c and d) role of the obliquity angle, k = 0.4. Panels (e and f) role of the
wavenumber, ¢ = 7/4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

amplification contrasted to the time evolution of the amplification
factor respectively for a favourable and an adversepressure
gradient. In this last case once its maximum value is reached, the
pressure has an oscillatory damping. Moreover, in this case the
maximum value of the pressure amplification, Py, is always higher
than in the case of g = 1. In Fig. 8(c) and (d), as a function of the
wave-angle, P4 is reported (circles) together with the maximum
of the amplification factor G, (triangles) and the difference
between the times where the two maxima are reached
AT = t(G(t) = Gmax) — t(P(t) = Pmax) (squares). We can observe that
Pnax decreases with the obliquity angle for g = —0.1988 while it
increases with the module of ¢ in the other case. In the case of
favourable pressure gradient, Fig. 8(c), we also observe that all the
quantities increase with the obliquity angle. Instead for negative
B, Pnax decreases with ¢ while Gyq grows. AT does not have a
monotone behaviour: increases initially, reaches a maximum at
¢ = /6 and then decreases. We also investigated the role of the
wavenumber in this context. Fig. 8(e) and (f) show the transient
growths as a function of the polar wavenumber for waves with
obliquity angle and cross flow angle m/4. For =1 all the
quantities, Ppngy, Gmax and AT grow with the wavenumber if k is
below the range of instability and decrease otherwise, see
Fig. 8(e). For p = —0.1988, Fig. 8(f), highlights a different possible
behaviour. In fact all the travelling waves shown in Fig. 8 have posi-
tive AT, but the very long waves in panel (f) (k < 0.05) have nega-
tive AT. In this cases the maximum of P can be delayed with
respect to the maximum of G for waves longer than those in the
unstable range. Even if it is not graphically presented here, we have
observed that in general Pnq, and Gpq both increase with 6 for
negative f and decrease with 6 for positive p. The pressure
behaviour here described at the wall also holds throughout the
entire boundary layer.

6. Concluding remarks

In this work we present a comprehensive study of the space of
the parameters relevant to the life of small perturbations of the
three-dimensional boundary layer in cross flow. We considered a
group of five parameters: the Reynolds number, the external pres-
sure gradient, the wave number, the angle of cross flow and the tilt
of the perturbation with respect to the streamline of the flow out-
side the boundary layer. We adopted almost optimal initial condi-
tions and classical perturbation methods to obtain information on
initial transient and temporal long-term behaviour.

We compared our results with results produced by other
numerical simulations concerning the evolution of three-dimen-
sional perturbations. In particular for the long term behaviour we
compare our results with Taylor and Peake (1998) and Mack
(1976), while for the initial transient we compare our results with
Breuer and Kuraishi (1994) and Corbett and Bottaro (2001). In both
cases good agreement was found.

Perturbations that have transitional growth but are asymptoti-
cally stable could still have a substantial role in triggering non-lin-
ear processes that may lead to transition to turbulence. Some of
our results are related to this role, in particular with respect to
the influence of the wave-angle. We show that in the decelerated
three-dimensional boundary layer at a high Reynolds number
there are some asymptotically stable perturbations in the range
of wave-angles [20 — 75] which are initially able to grow up to
six times faster than those which are asymptotically unstable
(waves almost aligned with the external flow or orthogonale to
it). Among these, some have negative phase speeds, that is they
propagate in the negative chordwise direction, although the asso-
ciated group velocities are always positive and the energy propa-
gates in the positive direction. This was observed for Reynolds



F. De Santi et al./International Journal of Heat and Fluid Flow 52 (2015) 64-71 71

numbers based on the displacement thickness higher than 10°,
which means Reynolds numbers of the order of 10* or 107, respec-
tively, when calculated on the thickness of the layer or on a chord
of the wing profile of about one meter.

There are two other noticeable aspects. The first is that in the
decelerated three-dimensional boundary layer the most unstable
perturbations are either those nearly aligned with the external cur-
rent or those almost orthogonal to it, that is almost aligned with
the cross flow. Oblique perturbations in between always have
strong growths which, however, are still transient, while the per-
turbations with tilt and direction of propagation opposite to the
cross flow are all unstable.

The second aspect is that the perturbed field of pressure at the
wall and inside the layer is not synchronous with the amplification
factor of the kinetic energy of the disturbances. In general, in the
case of boundary layers both accelerated and decelerated, the per-
turbed pressure field is made in advance up to about 100 times
scale. However, in the decelerated case, it is also observed that
the very long wave perturbations can induce a significant delay
in the oscillation of the pressure which again may be approxi-
mately up to 100 time scales of the system.
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