EPFDC 2011 F. De Santi, L. Ducasse, J. Riley, D. Tordella

Introduction Numerical Method

Unstratified Case 2D - 3D Compariso

Large- and small-Scale coherent structures

Stratified Case

Qualitayive Analysis Large- and Small-Scale Coherent Structures

Conclusior

References

Two-dimensional shearless turbulent mixing: kinetic energy self diffusion, also in the presence of a stable stratification

Francesca De Santi¹

Lauris Ducasse¹ James Riley² Daniela Tordella¹

¹Department of Aeronautics and Space Engineering, Politecnico di Torino, Italy ²Mechanical Engineering Department, University of Washington, WA

European Postgraduate Fluid Dynamics Conference 9th-12th of August 2011, Politecnico di Torino, Italy

General aspect

- We have performed a numerical experiments concerning the turbulent energy transport
- We have considered the simplest kind of two dimensional turbulent shear-less mixing process
 - \Rightarrow the interaction of two isotropic turbulent field with different kinetic energy but the same spectrum shape
- This turbulent transport is observed firstly in a pure shearless mixing process and in a second time adding the effect of a stable density stratification
 - ⇒ Conceptual experiment

EPFDC 2011 F. De Santi, L. Ducasse, J. Riley,

2D turbulent mixing also in

the presence of a stable stratification

D. Tordella

Introduction

Numerical Method

Unstratified Case 2D - 3D Comparis

small-Scale co structures

Stratified Case

Qualitayive Analysis Large- and Small-Scale Coherent Structures

Conclusion

EPFDC 2011 F. De Santi, L. Ducasse, J. Riley, D. Tordella

Introduction

Numerical Method

Unstratified Case

2D - 3D Comparison

Large- and small-Scale coherent structures

Stratified Case

Qualitayive Analysis Large- and Small-Scale Coherent Structures

Conclusion

References

Numerical Method

- Domain:
 - The computational domain is a $2\pi \times 2\pi$ rectangle with 1024 \times 1024 points
 - Periodic boundary condition in both directions
- Method:
 - Two-dimensional DNS
 - Vorticity stream function formulation
 - Use hyper-viscosity, $\nu = 2.4410^{-9} m^4/s$
 - Solves the Navier Stokes equation by a pseudo-spectral Fourier-Galerkin method, with the 2/3 de-aliasing technique
 - The time integration is done by a third-step third-order Adams Bashforth method

EPFDC 2011 F. De Santi, L. Ducasse, J. Riley, D. Tordella

Introduction

Unstratified Case

2D - 3D Comparisor

Large- and small-Scale coheren structures

Stratified Case

Qualitayive Analysis Large- and Small-Scale Coherent Structures

Conclusion

References

Flow description

Two decaying turbulent field with Kinetic Energy E_1 and E_2 are matched by means of a hyperbolic tangent function:

$$u(x) = u_1(x)p(x) + u_2(x)(1 - p(x))$$
$$p(x) = \frac{1}{2}[1 + tanh(a\frac{x}{L})tanh(a\frac{x - L/2}{L})tanh(a\frac{x - L}{L})]$$

(Here $L = 2\pi \ a = 28\pi, \ \Delta = L/40$)

The ratio of the turbulent kinetic energy has been chosen as the sole control parameter. In particular, the following values of energy ratio were chosen, $E_1/E_2 = 6.6$ 40 40 300 10^4 10^6

EPFDC 2011 F. De Santi. L. Ducasse, J. Riley, D Tordella

2D - 3D Comparison

2D - 3D Comparison

Mixing Laver Thickness \Rightarrow We define a penetration as • E1/E2=6.6 the position of the maximum • E₁/E₂=40 • E₁/E₂=300 of the skewness normalized $(t/\tau)^{0.72}$ • E₁/E₂=10⁴ over the mixing layer thick-• E₁/E₂=10⁶ ness $\eta = \frac{\chi_s}{\Delta t/\tau}$ and the diffusion velocity $v_{\mathcal{D}} = \frac{dx_s}{dt} = \eta \frac{d\Delta}{dt}$ 10¹ t/τ $2D: \ \frac{\Delta(t)}{\Delta(0)} \propto \frac{t^{0.72}}{\tau}$ $3D: \frac{\Delta(t)}{\Delta(0)} \propto \frac{t^{0.43}}{\tau}$ $v_{\mathcal{D}} = \frac{\eta}{\tau} \frac{d(t^{0.72}/\tau)t}{dt} \propto t^{-0.28}$ $v_{\mathcal{D}} = \frac{\eta}{\pi} \frac{d(t^{0.43}/\tau)t}{dt} \propto t^{-0.57}$

In 2D the turbulent diffusion is infinitely grater than the one measured in 3D⇒*movie*

 $\Delta(t)/\Delta(0)$

EPFDC 2011 F. De Santi, L. Ducasse, J. Riley, D. Tordella

Introduction Numerical Method

Unstratified Case

Large- and small-Scale coherent structures

Stratifie Case

Qualitayive Analysi Large- and Small-Scale Coherent Structures

Conclusion

References

1.5

0.5

S

S

Skewness of the velocity component in the inhomogeneous direction for each energy ratio.

 x_c = mixing layer center

Maximum of the Skewness as a function of the energy ratio and of the time

Kurtosis

30

Kurtosis of the velocity component in the inhomogeneous direction for each energy ratio.

 x_c = mixing layer center

Maximum of the kurtosis as a function of the energy ratio and of the time

2D turbulent mixing also in the presence of a stable stratification

EPFDC 2011 F. De Santi, L. Ducasse, J. Riley, D. Tordella

Introduction Numerical Method

Unstratified Case

Large- and small-Scale coherent structures

Stratifie Case

Qualitayive Analysis Large- and Small-Scale Coherent Structures

Conclusion

EPFDC 2011 F. De Santi, L. Ducasse, J. Riley, D. Tordella

Introduction

Unstratified Case

2D - 3D Comparisor Large- and

small-Scale coherer structures

Stratified Case

Qualitayive Analysis Large- and Small-Scale Coherent Structures

Conclusion

References

Flow Description

- We change the experiment by adding the effect of a stable stratification
- We rotate the vorticity field
- We create an initial density field by combining two constant density fields with the same hyperbolic tangent used for the vorticity field

The fluctuation component has periodic boundary condition \Rightarrow The stability of the stratification is guaranteed

• The results obtained in this way can be considered as the vertical section af a three-dimensional stratified flow

Formulation

Using the Boussunesq approximation the equations that describe the problem are:

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= -\frac{1}{\rho_0} \nabla \mathbf{p} - \frac{\rho'}{\rho_0} \mathbf{g} + \nu' \mathbf{u} \\ \frac{\partial \rho'}{\partial t} + (\mathbf{u} \cdot \nabla) \rho' + \mathbf{v} \frac{\mathbf{d}\rho_m}{\mathbf{dy}} &= \mathbf{k}' \mathbf{u} \end{aligned}$$

 $\nabla \cdot \mathbf{u} = \mathbf{0}$

$$\nu = 2.4 \ 10^{-10} m^4/s, \ k = 0.3 \ 10^{-2}, \ Sc* = (
u/(k*l^2)) = 1.32 \ 10^{-4}$$

- The energy ratio is constant, $E_1/E_2 = 6.6$
- The parameter of the experiment is the Froude number

$$Fr = rac{U}{\sqrt{-rac{g}{rho_0}rac{\partial
ho_m}{\partial y}L}}$$

 ν

 $Fr = \infty, Fr = 10, Fr = 0.1$ movie

mixing also in the presence of a stable stratification

2D turbulent

EPFDC 2011 F. De Santi, L. Ducasse, J. Riley, D. Tordella

Introduction

Numerical Method

Unstratified Case

Large- and small-Scale coheren structures

Stratified Case

Qualitayive Analysi Large- and Small-Scale Coherent Structures

Conclusion

EPFDC 2011 F. De Santi, L. Ducasse, J. Riley, D. Tordella

Introduction Numerical Method

Unstratified Case 2D - 3D Comparison Large- and small-Scale coherent structures

Stratifie Case

Qualitayive Analysis

Large- and Small-Scale Coherent Structures

Conclusior

References

Kinetic Energy Profile

Skewness

mixing also in the presence of a stable stratification EPFDC 2011 F. De Santi,

2D turbulent

L. Ducasse, J. Riley, D. Tordella

Introduction Numerical Method

Unstratified Case 2D - 3D Comparison Large- and small-Scale coherer structures

Stratified Case

Qualitayive Analysis

Large- and Small-Scale Coherent Structures

Conclusion

Kurtosis

of a stable stratification EPFDC 2011 F. De Santi, L. Ducasse, J. Riley, D. Tordella

2D turbulent mixing also in

the presence

Introduction Numerical Method

Unstratified Case 2D - 3D Comparison Large- and small-Scale coheren structures

Stratified Case

Qualitayive Analysis

Large- and Small-Scale Coherent Structures

Conclusion

EPFDC 2011 F. De Santi, L. Ducasse, J. Riley, D. Tordella

Introduction Numerical Method

Unstratified Case 2D - 3D Comparison Large- and small-Scale coherent structures

Stratified Case

Qualitayive Analysis Large- and Small-Scale Coherent Structures

Conclusion

References

Conclusion 1

Experiment 1: Interaction between two isotropic turbulent filed with different kinetic energy but the same spectrum shape

- The turbulent diffusion is infinitely greater than the one measured in 3D
- The analysis of the velocity in the inhomogeneous direction indicates that the flow is highly intermittent ⇒ Intermittency front
- The flow presents a long-range interaction

Experiment 2: Interaction between two isotropic turbulent filed with different kinetic energy and density but the same spectrum shape

- For small Froude numbers it is formed a separation layer of zero vorticity
- The energy profile in the mixing region is lower than the minimum value imposed by the initial condition, which shows the effect of the buoyancy force work

 Energy hole
- The velocity skewness enlightens the generation of an inverse energy flow and intermittent penetration from the low to the high energy field even in the case of mild stratification

References

- C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral method. Fundamentals in single domains. Springerl, 2006.
- [2] P.A. Davidson. An introduction to magnetohydrodynamics. Cambridge university press, 1988.
- [3] U. Frish. Turbulence: The legacy of A.N.Kolmogorov. Cambidge University Press, 1995.
- [4] U. Frish and G. Parisi. A multifractal model of intermittency. in turbulence and predictability in geophisical fluid dynamics and climate dynamics. 1985.
- [5] J. Hinze. Turbulence. McGraw-Hill, 1959.
- [6] H. Kellay and W. Goldburg. Two-dimensional turbulence: a review of some recent experiment. *Rep. Prog. Phys.*, 65, 2002.
- [7] A. Kolmogorov. The local structure of turbulence in incompressible viscous fluid flow for very large reynolds number. *Dokl. Akad. Nauk*, 26, 1941.
- [8] A. Kolmogorov. A refinement of previous hypotesis concerning the local structure of turbulence in incompressible viscous fluid at high reynolds number. J. Fluid Mech, 13, 1962.

- [9] P. Kundu and I. Cohen. Fluid Mechanics. Academic press, 2002.
- [10] L. Landau and E. Lifshitz. Fluid mechanics 2nd ed. 1987.
- [11] L. Richardson. Weather prediction by numerical process. Cambidge University Press, 1992.
- [12] J. Riley and S.M. deBruynKops. Dynamics of turbulence strongly influenced by buoyancy. *Phys. Fluids*, 15, 2003.
- [13] J. Riley and M.P. Lelong. Fluid motions in the presence of strong stable stratification. Ann. Rev. Fluid Mech., 32, 2000.
- [14] D. Tordella and M. Iovieno. Numerical experiments on the intermediate asymptotics of shear-free turbulent transport and diffusion. *J.Fluid Mech.*, 549, 2006.
- [15] D. Tordella, M. Iovieno, and P.R. Bailey. Sufficient condition for gaussian departure in turbulence. *Phys. Rev.*, 77, 2008.
- [16] D.J. Tritton. Physical fluid dynamics. Oxford science publications, 2006.
- [17] S. Veeravalli and Z. Warhaft. The shearless turbulence mixing layer. J. Fluid. Mech., 207, 1989.

mixing also in the presence of a stable stratification EPFDC 2011

2D turbulent

F. De Santi, L. Ducasse, J. Riley, D. Tordella

Introduction

Numerical Method

Unstratified Case

2D - 3D Comparison

Large- and small-Scale coherent structures

Stratified Case

Qualitayive Analysis Large- and Small-Scale Coherent Structures

Conclusion