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Presentation of the problem
2 turbulent flows put aside with different kinetic energies :
I a high energy field on the left of energy E1

I a low energy field on the right of energy E2
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Mixing layer thickness : ∆(t)

∆(0) ≈ l (integral scale)

l ≈ D/80

Periodic boundary conditions : 2 mixing layers in the simulation
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Presentation of the problem

Main goals :
I Study the turbulent diffusion through the evolution in time of the

mixing layer
I Compare 2D and 3D cases

Shearless mixing layers show the following properties:
I No gradient of mean velocity→ no kinetic energy production
I Mixing generated by the inhomogeneity in the turbulent kinetic

energy
I Intermittent behavior at both large and small scales (EC-512,

2009)
I Gradient of energy : sufficient condition for the onset of

intermittency (Phys.Rev.E, 2008)
I 2D and 3D mixings→ show a very different behaviour
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A visualisation
Kinetic energy : evolution in time
Initial energy ratio : E1/E2 = 6.6

2 D 3 D
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Important remarks

Main parameter : Initial energy ratio E1/E2

The system has been studied using the values :
E1/E2 = 6.6, 40, 300, 104, 106

In the Navier Stokes equation :

∂tu + (u · ∇)u =
1
ρ
∇p + (−1)p+1νn∆2nu

2D : An hyperviscous coefficient (n = 2) has been used

3D : The total energy decays faster than in 2D
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Evolution of the mixing layer

Time evolution of the mixing layer thickness ∆(t) :
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Velocity statistics

Skewness (computed along the homogeneous y direction)
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Velocity statistics

Kurtosis (computed along the homogeneous y direction)
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Velocity statistics
Position of the maximum of skewness XS
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2D⇒ XS(t) ∝ t evolves faster than ∆(t) ∝ t0.7

3D⇒ XS(t) ∝ ∆(t) ∝ t0.33
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Time evolution

Time evolution of the energy profile :

—— Mixing layer
—— Position of the maximum of skewness

Total time in both cases : ∼ 22 τ
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Velocity statistics
Evolution of the penetration η = XS/∆

2D⇒ η(t) diverges

3D⇒ η(t) reaches a constant value : ηmax
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Memory

Proposal of a memory measure as a global quantity referred to its
own time derivative, for example

MEM =
∆

∆′

2D : d∆(t)
dt ∼ t−0.3, 3D : d∆(t)

dt ∼ t−0.67

2D : MEM =
∆(t)
∆(t)t
∼ 1.4t, 3D : MEM =

∆(t)
∆(t)t
∼ 3t

different dimensionality, same trend (qualitative universality?), with a
different coefficient

3D has a slightly longer memory than 2D
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Conclusions

Comparison between the 2D and 3D situation :

Similarities :
I ∆(t) evolves asymptotically in time as a power law
I A strong intermittency→ visible on the high order moments

Differences :
I Mixing is faster in 2D
I No autosimilarity in time in the 2D case

Possible explanation :

The evolution of ∆(t) is essentially led by the large scales
2D→ energy tends to concentrate to the large scales (inverse cascade)
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