# A measure of turbulent diffusion in two and three dimensions



F. De Santi<sup>1</sup>, L. Ducasse<sup>1</sup>,
J. von Hardenberg<sup>2</sup>,
M. Iovieno<sup>1</sup>, D. Tordella<sup>1</sup>

<sup>1</sup>Politecnico di Torino, Torino, Italy <sup>2</sup>Istituto di Scienze dell'Atmosfera e del Clima, CNR, Torino, Italy

September 14, 2010

European Fluid Mechanics Conference - 8

### Presentation of the problem

#### 2 turbulent flows put aside with different kinetic energies:

- ▶ a high energy field on the left of energy  $E_1$
- ▶ a low energy field on the right of energy  $E_2$



Mixing layer thickness :  $\Delta(t)$ 

 $\Delta(0) \approx l$  (integral scale)

 $l \approx D/80$ 

Periodic boundary conditions: 2 mixing layers in the simulation

### Presentation of the problem

#### Main goals:

- Study the turbulent diffusion through the evolution in time of the mixing layer
- Compare 2D and 3D cases

### Presentation of the problem

#### Main goals:

- Study the turbulent diffusion through the evolution in time of the mixing layer
- Compare 2D and 3D cases

### Shearless mixing layers show the following properties:

- ► No gradient of mean velocity → no kinetic energy production
- Mixing generated by the inhomogeneity in the turbulent kinetic energy
- ► Intermittent behavior at both large and small scales (EC-512, 2009)
- Gradient of energy: sufficient condition for the onset of intermittency (Phys.Rev.E, 2008)
- ► 2D and 3D mixings → show a very different behaviour

### A visualisation

### Kinetic energy: evolution in time

Initial energy ratio :  $E_1/E_2 = 6.6$ 



### Important remarks

Main parameter : Initial energy ratio  $E_1/E_2$ 

The system has been studied using the values:

$$E_1/E_2 = 6.6, 40, 300, 10^4, 10^6$$

In the Navier Stokes equation:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \frac{1}{\rho} \nabla p + (-1)^{p+1} \nu_n \Delta^{2n} \mathbf{u}$$

2D: An hyperviscous coefficient (n = 2) has been used

3D: The total energy decays faster than in 2D

# Evolution of the mixing layer

Time evolution of the mixing layer thickness  $\Delta(t)$ :



 $\Rightarrow$  2D mixes faster!

**Skewness** (computed along the homogeneous *y* direction)



$$E_1/E_2 = 10^4$$

Kurtosis (computed along the homogeneous *y* direction)



$$E_1/E_2 = 10^4$$

Position of the maximum of skewness  $X_S$ 





$$2D \Rightarrow X_S(t) \propto t$$
 evolves faster than  $\Delta(t) \propto t^{0.7}$ 

$$3D \Rightarrow X_S(t) \propto \Delta(t) \propto t^{0.33}$$

### Time evolution

Time evolution of the energy profile:



- Mixing layer
- —— Position of the maximum of skewness

Total time in both cases :  $\sim 22 \tau$ 

Evolution of the penetration  $\eta = X_S/\Delta$ 

 $2D \Rightarrow \eta(t)$  diverges

 $3D \Rightarrow \eta(t)$  reaches a constant value :  $\eta_{max}$ 



### Memory

Proposal of a memory measure as a global quantity referred to its own time derivative, for example

$$MEM = \frac{\Delta}{\Delta'}$$

2D: 
$$\frac{d\Delta(t)}{dt} \sim t^{-0.3}$$
, 3D:  $\frac{d\Delta(t)}{dt} \sim t^{-0.67}$ 

2D: MEM = 
$$\frac{\Delta(t)}{\Delta(t)_t} \sim 1.4t$$
, 3D: MEM =  $\frac{\Delta(t)}{\Delta(t)_t} \sim 3t$ 

different dimensionality, same trend (qualitative universality?), with a different coefficient

3D has a slightly longer memory than 2D

### **Conclusions**

#### Comparison between the 2D and 3D situation:

#### Similarities:

- $ightharpoonup \Delta(t)$  evolves asymptotically in time as a power law
- ► A strong intermittency → visible on the high order moments

#### Differences:

- Mixing is faster in 2D
- ▶ No autosimilarity in time in the 2D case

### **Conclusions**

#### Comparison between the 2D and 3D situation:

#### Similarities:

- $ightharpoonup \Delta(t)$  evolves asymptotically in time as a power law
- ► A strong intermittency → visible on the high order moments

#### Differences:

- Mixing is faster in 2D
- ▶ No autosimilarity in time in the 2D case

### Possible explanation:

The evolution of  $\Delta(t)$  is essentially led by the large scales 2D $\rightarrow$  energy tends to concentrate to the large scales (inverse cascade)