Multiscale analysis of long three-dimensional perturbation
waves in shear flows
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In spatially developing flows different scales can be selected. In some flow config-
urations, it is observed that long waves can be destabilizing. An example of this be-
haviour is the three-dimensional cross-flow boundary layer. In such instances, when
instability occurs, the perturbation wavenumber k is much less than O(1). Thus, a
regular perturbation scheme can be adopted, defining as the small parameter the po-
lar wavenumber k. Two spatial scales, a short one - y - and a long one associated to
the perturbation - Y = ky - can be introduced (y is the coordinate normal to the base
flow direction). For the temporal dynamics, three temporal scales, the fast one - ¢ -
and the slow ones - 7 = kt (perturbation) and 7' = k*¢ (diffusion) - can be identified.

The formulation is carried on in terms of velocity and vorticity! by imposing initial
arbitrary conditions in terms of the elements of the trigonometrical Schauder basis in
the L? space. A combined Laplace-Fourier transform is performed?. We introduce the
wavenumber .. and the spatial damping a; > 0 in the evolution direction x > 0, and
the wavenumber v in the direction z normal to the base flow. The initial perturbation
has a zero or positive spatial damping because its kinetic energy must be finite.
Here the perturbative equations are solved up to order O(1) for the case of the two-
dimensional non parallel wake. The base flow is approximated using the longitudinal
as well as the transversal components of an asymptotic Navier-Stokes expansion?, so
that a trace of the transversal dynamics (in particular of the entrainment) is included
in the stability analysis. A section of the intermediate wake (o = 10 body scales,
region where absolute instability pockets were found by recent modal analyses 4~?)
is considered. In Fig. 1 an example of short and long term growth of the normalized
kinetic energy density G of the perturbation® is shown. An interesting result is that,
by changing the order of magnitude of a;, perturbations that are more rapidly damped
in space (Fig. 1a) lead to an immediate and monotone non decreasing growth in time
(Fig. 1b).
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Figure 1: Effect of the spatial damping rate «;. (a) projection of perturbation wave in the
z direction and (b) normalized kinetic energy density G as function of time. Comparison
between the multiscale and full problem (¢ is the disturbance angle of obliquity with respect
to the base flow plane, the inputs are asymmetric).
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