
Initial-value problem for shear flows

1 Mathematical Framework
The early transient and long asymptotic behaviour is studied using the initial-
value problem formulation for two typical shear flows, the plane Poiseuille flow
and the bluff-body wake (see Fig. 1b and 1c, respectively). The continuity and
Navier-Stokes equations that describe the perturbed system, subject to small three-
dimensional disturbances, are linearized and written as
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∂ũ

∂x
+ ṽ
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∂ṽ

∂t
+ U

∂ṽ
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where (ũ(x, y, z, t), ṽ(x, y, z, t), w̃(x, y, z, t)) and p̃(x, y, z, t) are the perturbation
velocity components and pressure, respectively. U and dU/dy indicate the base
flow profile (under the near-parallelism assumption) and its first derivative in the
shear direction. For the channel flow, the independent spatial variable z is defined
from −∞ to +∞, the x variable from −∞ to +∞, and the y from −1 to 1.
For the wake flow, z is defined from −∞ to +∞, x from 0 to +∞, and y from
−∞ to +∞. All the physical quantities are normalized with respect to a typical
velocity (the free stream velocity, Uf , and the centerline velocity, U0, for the 2D
wake and the plane Poiseuille flow, respectively), a characteristic length scale (the
body diameter, D, and the channel half-width, h, for the 2D wake and the plane
Poiseuille flow, respectively), and the density, ρ.

The base flow of the wake is approximated at an intermediate (x0 = 10) and at
a far longitudinal station (x0 = 50), through two-dimensional analytical expansion
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Figure 1: (a) Perturbation geometry scheme. The perturbation propagates in the
direction of the polar wavenumber, k =

√
α2 + γ2. ϕ is the angle of obliquity

with respect to the basic flow. (b)-(c) Symmetric and antisymmetric initial con-
ditions in terms of the perturbation transversal velocity, v̂(y, t = 0) (thin curves),
and base flow velocity profiles, U(y) (thick curves).

solutions [1] of the Navier-Stokes equations. Assuming that the bluff-body wake
is a slowly evolving spatial system, the base flow is frozen at each longitudinal
station past the body, by using the first orders of the expansion solutions [1],

U(y;x0, Re) = 1− ax
−1/2
0 e

−Re

4

y

x0 ,

where a is related to the drag coefficient CD (a = 1
4
(Re/π)1/2cD(Re), see [1]),

and x0 is the streamwise longitudinal station.
The plane channel flow is homogeneous in the x direction and is represented

by the Poiseuille solution, U(y) = 1− y2.
By combining equations (1) and (4) to eliminate the pressure terms, the lin-

earized equations describing the perturbation dynamics become

2



(
∂

∂t
+ U

∂

∂x

)
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where ω̃y is the transversal component of the perturbation vorticity. The physical
quantity Γ̃ is defined as

∇2ṽ = Γ̃. (7)

In so doing, the three coupled equations (5), (6) and (7) describe the perturbed
system. Equations (5) and (6) are the Orr-Sommerfeld and Squire equations, re-
spectively, which are obtained from the classical linear stability analysis, here
they are written for three-dimensional disturbances in partial differential equation
form. On the basis of kinematics, one can derive the relation
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that physically links the perturbation vorticity in the x and z directions (ω̃x and
ω̃z, respectively) to the perturbation velocity field through Eq. (7). If equations
(5) and (7) are combined, one gets the following equation
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which, together with (6) and (7), fully describe the perturbed system in terms of
vorticity and velocity [2, 3, 4, 5].

The perturbations are Fourier transformed in the x and z directions for the
channel flow. Two real wavenumbers, α and γ, are introduced along the x and
z coordinates, respectively. A combined Laplace-Fourier decomposition is per-
formed for the wake flow in the x and z directions. In this case, a complex
wavenumber α = αr + iαi can be introduced along the x coordinate, as well as a
real wavenumber, γ, along the z coordinate. The perturbation quantities (ṽ, Γ̃, ω̃y)

involved in the system dynamics are now indicated as (v̂, Γ̂, ω̂y), where

f̂(y, t;α, γ) =

∫ +∞

−∞
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−∞
f̃(x, y, z, t)e−iαx−iγzdxdz, (10)
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indicates in the α − γ phase space the two-dimensional Fourier transform (in the
case of the channel flow) of a general dependent variable, f̃ , and

ĝ(y, t;α, γ) =

∫ +∞

−∞

∫ +∞

0

g̃(x, y, z, t)e−iαx−iγzdxdz, (11)

indicates the two-dimensional Laplace-Fourier transform (in the case of the wake
flow) of a general dependent variable, g̃. To obtain a finite perturbation kinetic
energy, the imaginary part, αi, of the Laplace transformed complex longitudinal
wavenumber can only assume non-negative values and can thus be defined as a
spatial damping rate in the streamwise direction. In so doing, perturbative waves
can spatially decay (αi > 0) or remain constant in amplitude (αi = 0). Here, for
the sake of simplicity, we have αi = 0, therefore α = αr. The governing partial
differential equations we consider are thus
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where ϕ = tan−1(γ/α) is the perturbation obliquity angle with respect to the x-y
plane, k =

√
α2 + γ2 is the polar wavenumber and α = kcos(ϕ), γ = ksin(ϕ)

are the wavenumber components in the x and z directions, respectively. See Fig.
1a, where the perturbation scheme is reported.

Various initial conditions can be used to explore the transient behavior. The
important feature here is the ability to make arbitrary specifications. It is physi-
cally reasonable to assume that the natural issues affecting the initial conditions
are the symmetry and the spatial lateral distribution of disturbances. It has been
observed [6, 7, 8] that, keeping all the other parameters fixed, if the perturbation
oscillates rapidly or mainly lies outside the shear region then, for a stable con-
figuration, the final damping is accelerated while, for an unstable configuration,
the asymptotic growth is delayed. However, the general qualitative scenario is
not altered. Therefore, to perform a more synthetic perturbative analysis, we only
focus on symmetric and asymmetric inputs which are localized and distributed
over the whole shear region (see Fig. 1b-c). The transversal vorticity ω̂y(y, t)

4



Channel flow Wake flow

Ω(α, γ)(1− y2)2 Ω(α, γ)exp(−y2)cos(y)
v̂(y, t = 0) or or

Ω(α, γ)y(1− y2)2 Ω(α, γ)exp(−y2)sin(y)
ω̂y(y, t = 0) 0 0

Table 1: S1. Initial conditions for the channel and wake flows.

is initially taken equal to zero to highlight the three-dimensionality net contribu-
tion on its temporal evolution. The effects of non-zero initial conditions on the
transversal vorticity ω̂y(y, t) can be found in [7, 8]. The imposed initial condi-
tions are reported in table 1, for the channel and wake flows. Ω(α, γ) is the phase
space transform of the x-z dependence prescribed at time t = 0. Here, we set
Ω(α, γ) = 1, which means that no wavenumber is initially biased in the phase
space.
For the channel flow no-slip and impermeability boundary conditions are imposed,

v̂(y = ±1, t) =
∂v̂

∂y
(y = ±1, t) = ω̂y(y = ±1, t) = 0, (15)

while for the wake flow uniformity at infinity and finiteness of the energy are
imposed,

v̂(y → ±∞, t) =
∂v̂

∂y
(y → ±∞, t) = ω̂y(y → ±∞, t) = 0. (16)

In order to measure the growth of the perturbations, we define the kinetic
energy density, e,
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where −yf and yf are the computational limits of the domain, while û, v̂, ŵ
and ω̂y are the transformed velocity and transversal vorticity components of the
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perturbation field, respectively. We can also define the amplification factor, G, as
the kinetic energy density normalized with respect to its initial value,

G(t;α, γ) =
e(t;α, γ)

e(t = 0;α, γ)
. (18)

Assuming that the temporal asymptotic behavior of the linear perturbations is
exponential, the temporal growth rate, r, can be defined as

r(t;α, γ) =
log[e(t;α, γ)]

2t
, t > 0. (19)

This quantity has a precise meaning when the asymptotic state is reached, that is,
when it becomes a constant.

The frequency, ω, of the perturbation is defined as the temporal derivative of
the unwrapped wave phase, θ(y, t;α, γ), at a specific spatial point along the y
direction. The wrapped phase,

θw(y, t;α, γ) = arg(v̂(y, t;α, γ)), (20)

is a discontinuous function of t with θw ∈ (−π,+π], while the unwrapped phase,
θ, is a continuous function defined by changing absolute θw jumps greater than or
equal to π to their 2π complement. In the case of the wake we use as reference
observation point y = y0 = 1, and in the case of the channel flow the point
y = y0 = 0.5. The frequency [6] is thus

ω(t; y0, α, γ) = |dθ(t; y0, α, γ)|/dt. (21)

2 Numerical method, flow chart and Matlab scripts
Equations (12)-(14) are numerically solved by the method of lines [9]: the equa-
tions are first discretized in the spatial domain and then integrated in time. The
spatial derivatives in the y domain are discretized using a second-order finite dif-
ference scheme for the first and second derivatives. One-sided differences are
adopted at the boundaries, while central differenced derivatives are used in the
remaining part of the domain. The spatial grid is uniform with a spatial step, h,
which is equal to 0.05 and 0.004, for the wake and channel flows, respectively.
Since the wake flow is spatially unbounded in the transversal direction, the spatial
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domain, [−yf , yf ], is chosen so that the numerical solutions are insensitive to fur-
ther extensions of the computational domain size. The spatial domain is enlarged
when long perturbative waves are analyzed, thus we put

• Channel flow: y ∈ [−1, 1], h = 0.004, grid points N = 501;

• Wake flow and k > 1: y ∈ [−20, 20], h = 0.05, grid points N = 801;

• Wake flow and k ∈ [0.75, 1]: y ∈ [−30, 30], h = 0.05, grid points N =
1201;

• Wake flow and k ∈ [0.45, 0.7]: y ∈ [−40, 40], h = 0.05, grid points N =
1601.

Equations (12)-(14) are then integrated in time by means of an adaptative one-
step solver, based on an explicit Runge-Kutta (2,3) formula and implemented in
the ode23 Matlab function [10, 11]. The choice of the ode23 routine is a good
compromise between nonstiff solvers (ode45 and ode113), which give a higher
order of accuracy, and stiff solvers (ode15s and ode23s), which can in general
be more efficient.

In the remaining part of this Section, we describe the structure of the numerical
code (see Fig. 2, where the flowchart is shown) and the details of the Matlab
scripts:

• channel_main.m/wake_main.m: this file contains the main program
necessary to use the code. The simulation parameters (angle of obliquity,
symmetry of the perturbations, range of wavenumbers) are set as well as
base flow configurations (Reynolds numbers and longitudinal downstream
station for the wake flow) are set. A loop is defined which begins with the
first simulated wavenumber, kin, and ends with the last simulated wavenum-
ber, kfin. Once this cycle is entered, for a fixed wavenumber, the function
IVP_complete.m is called;

• IVP_complete.m: the perturbative equations (12)-(14) are solved in this
routine. Once the initial conditions are defined, the ode23 function is it-
eratively called together with three auxiliary functions, dhdt.m, MM1.m
and solve_for_v_complete.m. The dhdt.m script represents the
right-hand side of the perturbative equations (13)-(14), while MM1.m and
solve_for_v_complete.m link the solutions of Eq. (12) to (13) (MM1.m
is called for the channel flow, solve_for_v_complete.m for the wake
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Figure 2: Flowchart of the Matlab codes.

flow). Once the solutions are obtained, the perturbation velocity field and
energy are computed, and verify_condition.m is called;

• verify_condition.m: this function verifies if the asymptotic condi-
tion for the current perturbative wave is reached. If the asymptotic state is
not reached, IVP_complete.m is called again and the equations are fur-
ther integrated in time. If the perturbation is instead in its asymptotic condi-
tion, the loop on the wavenumber range is incremented by one and the next
wavenumber will be processed by channel_main.m/wake_main.m.
When the last selected wavenumber, kfin, verifies the asymptotic condition,
the procedure stops.

3 Database setting
Here we describe the database structure. For the channel flow, the perturbative
analysis considers 4 parameters (Reynolds number, symmetry/asymmetry, angle
of obliquity and wavenumber). Every folder, corresponding to a certain specifica-
tion of the above parameters, contains the following text files:
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• prefix_t_n.txt: the temporal points, M , at which the solutions are
computed through the Matlab code, are reported in column;

• prefix_u_n.txt, prefix_v_n.txt, prefix_w_n.txt: these files
contain the perturbation velocity field components. Each of them has two
columns, the first one for the real part and the second one for the imaginary
part of the velocity component. The column length is MxN , where N is
the number of spatial grid points (N = 501 for the channel flow) and M are
the temporal instants. For every fixed time, the velocity spatial distributions
are put in column;

• prefix_omega_y_n.txt: this file contains the transversal vorticity
component and is structured as the above velocity field files;

• prefix_energy_n.txt: in this file, the kinetic energy density, e, is
reported. The first column expresses the temporal points, M , and the second
one the corresponding energy values.

Each of these files contains, as a prefix in its name, the parameter information and
has an increasing number, n, as a suffix. This integer number, n, accounts for the
fact that outputs are periodically saved (after a variable temporal interval) as the
equations are integrated in time.

Let us make an example. Suppose we are interested in the simulation with
parameters Re = 500, symmetric initial conditions, ϕ = π/4, k = 3. If one goes
to
/Channel/Re_500/Re_500_sym/Re_500_sym_phi_45/Re_500_sym_phi_45_k_3,
he will find the above text files with prefix Re_500_sym_phi_45_k_3 and
suffix n ≥ 1.

For the wake flow, data are organized in an analogous way to the one described
for the channel flow. It should be recalled that 5 parameters are here considered
(Reynolds number, wake position, symmetry/asymmetry, angle of obliquity and
wavenumber). Therefore, in the corresponding folders and files, as part of the
suffix, information on the chosen downstream station, x0, are added similarly to
what done for the other parameters. Moreover, concerning the perturbation veloc-
ity and the transversal vorticity files, it should be recalled that the number of grid
points, N , depends on the wavenumber considered (see Section 2, N = 801 if
k > 1, N = 1201 if k ∈ [0.75, 1], N = 1601 if k ∈ [0.45, 0.7]).

9



References
[1] D. Tordella, M. Belan, A new matched asymptotic expansion for the inter-

mediate and far flow behind a finite body. Phys. Fluids 15 1897-1906 (2003).

[2] W. O. Criminale, P. G. Drazin, The evolution of linearized perturbations of
parallel shear flows. Stud. Applied Math. 83 123-157 (1990).

[3] P. G. Drazin, Introduction to hydrodynamic stability (Cambridge University
Press, 2002).

[4] W. O. Criminale, T. L. Jackson, R. D. Joslin, Theory and Computation in
Hydrodynamic Stability (Cambridge University Press, 2003).

[5] P. J. Schmid, D. S. Henningson, Stability and Transition in Shear Flows
(Springer, 2001).

[6] S. Scarsoglio, D. Tordella, W. O. Criminale, An Exploratory Analysis of
the Transient and Long-Term Behavior of Small Three-Dimensional Pertur-
bations in the Circular Cylinder Wake. Stud. Applied Math. 123 153-173
(2009).

[7] W. O. Criminale, T. L. Jackson, D. G. Lasseigne, R. D. Joslin, Perturbation
dynamics in viscous channel flows. J. Fluid Mech. 339 55-75 (1997).

[8] S. Scarsoglio, Hydrodynamic linear stability of the two-dimensional bluff-
body wake through modal analysis and initial-value problem formulation,
PhD Thesis, Politecnico di Torino (2008).

[9] W. F. Ames, Numerical Methods for Partial Differential Equations (Aca-
demic Press, 1977).

[10] P. Bogacki, L. F. Shampine, A 3(2) pair of Runge-Kutta formulas. Appl.
Math. Lett. 2 1-9 (1989).

[11] L. F. Shampine, M. W. Reichelt, The MATLAB ODE Suite. SIAM J. Sci.
Comput. 18 1-22 (1997).

10


