
Computer Physics Communications 141 (2001) 365–374

www.elsevier.com/locate/cpc

A new technique for a parallel dealiased pseudospectral
Navier–Stokes code

Michele Iovieno a, Carlo Cavazzoni b, Daniela Tordella a,∗

a Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
b CINECA, Consorzio Interuniversitario, Via Magnanelli 6/3, 40033 Casalecchio di Reno (Bo), Italy

Received 15 August 2001; accepted 22 September 2001

Abstract

A novel aspect of a parallel procedure for the numerical simulation of the solution of the Navier–Stokes equations through

the Fourier–Galerkin pseudospectral method is presented. It consists of a dealiased (“3/2” rule) transposition of the data that

organizes the computations in the distributed direction in such a way that whenever a Fast Fourier Transform must be calculated,

the algorithm will employ data stored solely on the proper memory of the processor which is computing it. This provide for

the employment of standard routines for the computations of the Fourier transform. The aliasing removal procedure has been

directly inserted into the transposition algorithm. The code is written for distributed memory computers, but not specifically for

a peculiar architecture. The use on a variety of machines is allowed by the adoption of the Message Passing Interface library.

The portability of the code is demonstrated by the similar performances, in particular the high efficiency, that all the machines

tested show up to a number of parallel processors equal to 1/2 the truncation parameter N/2. Explicit time integration is used.

The present code organization is relevant to physical and mathematical problems which require a three dimensional spectral

treatment.  2001 Elsevier Science B.V. All rights reserved.

Keywords: Navier–Stokes equations; Spectral methods; Parallel; Transposition algorithm

1. Introduction

Numerical flow field simulations based on spec-

tral methods have been often carried out in the last

decades. A detailed review on these methods is given

by Canuto et al. [5] and by Fisher and Patera [10].

Full three-dimensional pseudospectral codes are con-

veniently used in association with periodic type of

boundary conditions for the direct simulation of un-

steady free flows such as homogeneous isotropic tur-

* Corresponding author.

E-mail addresses: iovieno@athena.polito.it (M. Iovieno),

c.cavazzoni@cineca.it (C. Cavazzoni), tordella@polito.it

(D. Tordella).

bulence (Gagne and Castaing, 1991 [11], Jackson

et al., 1991 [14], Jimenez et al., 1993 [15]), free mix-

ing layers (Briggs et al., 1996 [3])—which know ap-

plications in astrophysics (Ray, 1996 [22])—and ho-

mogeneous turbulence subject to solid body rotation

(Cambon et al., 1997 [4]), which is of concern in geo-

physics.

Even if spectral methods need less mesh points

that other spatial discretization methods to achieve a

given accuracy, parallel processing in such a situa-

tions may be required due to the hugeness of compu-

tational resources entailed. The global character of the

multidimensional Fourier transforms, repeatedly com-

puted within any spectral algorithm, constitutes the

0010-4655/01/$ – see front matter  2001 Elsevier Science B.V. All rights reserved.

PII: S0010-4655(01)00433-7

366 M. Iovieno et al. / Computer Physics Communications 141 (2001) 365–374

main difficulty inside the process of parallelization of

a Navier–Stokes code.

Examples of flows simulations exploiting a large

parallelism, mostly performed in the last fifteen years,

are described in the review paper by Fisher and Pa-

tera [10]. Here we will mention briefly few applica-

tions that implemented a spectral method in all the

directions. In 1985 Dang [9] evaluated, versus direct

numerical computations done over 643 points, simple

sub-grid-scale turbulent models for the simulation of

homogeneous and strained turbulence over 163 points,

using two array processors. In 1988 Canuto and Gib-

erti [6] presented a spectral algorithm for the direct

simulation of homogeneous, fully developed turbu-

lence. The algorithm is detailed with the comparative

analysis of all the various factors—from differentia-

tion in transform space to time advancing—affecting

the parallel performance and with the global speed-up

as a function of the local speed-up in executing the

structure of wave number k over np processors. Ho-

mogeneous turbulence implementation on a hypercube

(32 nodes iPSC/860) has been described in Jackson

et al. (1991, [12]) by means of a pseudospectral non-

dealiased approach in which the Fast Fourier Trans-

forms (FFT in the following) are computed through

a procedure performing cross-processor transposes

along the spatial/wavenumber dimension of memory

distribution. In 1991 Pelz [21] simulated homoge-

neous isotropic turbulence on a 1024-node hypercube

decomposing the domain in all the direction and us-

ing parallel multidimensional FFT algorithm. Also in

1992 appeared one of the up to now better resolved

(5123) homogeneous isotropic turbulence simulation

(Chen and Shan, 1992 [7]). The computationwas done

on 65536 processors of the Connection Machine-2 by

means of a fully parallel algorithm. An algorithm con-

ceived to run on three partitioned parallel machines,

where to each spatial projection of the Navier–Stokes

equations corresponds a group of processors, has been

proposed by Basu in 1994 [1], using the 2/3 rule of

dealiazing. Two parallel implementations of 3D Fast

Fourier Transforms suitable for pseudo-spectral simu-

lation of turbulent field, however specific for the IBM

SP1 and SP2 scalable parallel machines, have been

presented by Briscolini in 1995 [2].

In this paper, we describe a parallel algorithm for

the dealiased pseudospectral Fourier–Galerkinmethod

applied to the Navier–Stokes equations. The alias-

ing error is removed through the “3/2-rule”, which

enables the removal of the error without reducing

the number of active modes. The procedure is—for

the first time—combined with the computation of di-

rect and inverse FFT through a proper transposition

technique. The use of real-to-real one processor one-

dimensional standard FFT routines and of MPI library

(see [14,19]) allows a very good portability of the

code, demonstrated through comparative benchmark

results produced by three different machines.

The physical problem and the numerical method are

reviewed in Section 2. In Section 3 the paralleliza-

tion technique is detailed. Section 4 contains the code

performances over different machines and resolutions

and, as a general example of performance, the compu-

tation of the three-dimensional energy spectrum for a

decaying homogeneous isotropic turbulence field. The

simulation Reynolds number, based on the Taylor mi-

croscale, is that for which there are available compar-

isons with both experimental [8] and direct numerical

simulations [15] results.

2. The physical problem

We consider flow fields represented by the incom-

pressible Navier–Stokes equations

∂iui = 0, (1)

∂tui + ∂j (uiuj)=−ρ−1∂ip+ ν∇2ui, (2)

where ui(x1, x2, x3, t) is the velocity field, p(x1, x2,

x3, t) the pressure, ρ the constant density and ν the

kinematic viscosity, that is also assumed constant. The

domain is cubic of size L. The boundary conditions

are periodic and represented by the relationships:

ui

(

x+Le(j), t
)

= ui(x, t) ∀i, j. (3)

These boundary conditions are particularly suited to

simulate homogeneous and isotropic, mono or multi-

phase, turbulent fields either by means of the direct

simulation technique or by means of the large eddy

scale method (see, for example, Lesieur and Metais

[16], Meneveau and Katz [18]), but they may also be

used for other kind of free flows and are not limited to

turbulent regimes.

The mathematical structure of the problem leads

naturally to the adoption of a spectral discretization,

and in particular to a Fourier–Galerkin method, a

M. Iovieno et al. / Computer Physics Communications 141 (2001) 365–374 367

weighted residuals method in which the basis and test

functions are both trigonometric polynomials of de-

gree 6 N/2. The spectral method is the most accu-

rate method since using it to compute an infinitely

smooth solution the numerical error decays exponen-

tially rather than algebraically as the resolution is in-

creased [5].

Taking the divergence of (2) and substituting (1), the

problem may be conveniently rewritten as

∂tui =−∂j (uiuj)− ρ−1∂ip+ ν∇2ui, (4)

−ρ−1∇2p = ∂i∂j (uiuj). (5)

The expansion of ui and p in terms of the basis

functions are then introduced (see [5]),

uN
i (x, t)=

N/2−1
∑

k1,k2,k3=−N/2

ûN
i,k(t)e

ik·x, (6)

pN (x, t)=

N/2−1
∑

k1,k2,k3=−N/2

p̂N
k (t)eik·x (7)

and the solution is enforced by requiring that the

residual of Eqs. (4), (5) be orthogonal to all the test

functions. This yields:

∂t û
N
i,k =−ikj (̂ujui)

N

k
− ikiρ

−1p̂N
k − νk2ûN

i,k, (8)

k2ρ−1p̂N
k =−kikj (̂uiuj)

N

k , k = ‖k‖. (9)

The pressure may be eliminated to yield

∂t û
N
i,k =−ikj (̂ujui)

N

k + iki

klkj

k2
(̂uluj)

N

k − νk2ûN
i,k.

(10)

The semi-discrete equation (10) is then resolved us-

ing a four-stages fourth-order explicit Runge–

Kutta scheme in the low storage version by Jameson,

Schmidt and Turkel (1981) [13].

3. Code parallelization

3.1. Parallelization strategy

The code uses as main unknowns the Fourier coeffi-

cients of the expansion (6), which are stored in Her-

mitian form in each direction. As opposed to other

spatial discretization schemes, like finite difference or

finite volume, most operations are local in the wave

numbers space and do not require the knowledge of

the other dependent variables in the surrounding of a

given point in the physical domain. This is true both

for the differentiation, that reduces to multiplication

of the Fourier coefficient by the relevant wave num-

ber, and for the solution of the Poisson equation (5),

that becomes now a diagonal linear system ofN3 inde-

pendent equations, see Eq. (9). The dependent variable

fields are stored in three-dimensional matrices that

have been distributed among processors along only

one direction. The algorithm does not depend on the

direction and one is free to choose any of the three spa-

tial directions to distribute the data among the proces-

sors (from now on, we conventionally indicate the di-

rection of distribution as direction 3). This strategy is

convenient because, whether associated to an oppor-

tune data transposition technique among the proces-

sors, allows computation of the right hand side of the

system (9) and thus to associate to each processor a

subset of relevant equations without overlapping of

data. For this reason, assuming the use of processors

having sufficient memory, there is no advantage in the

distribution of all directions. Furthermore, leaving to

each processor the full data in the two non-distributed

directions increases the numerical efficiency of the

FFT (unidimensional, real to real) computations.

Fig. 1. Flow chart: n temporal index, N dimension of the data

matrices.

368 M. Iovieno et al. / Computer Physics Communications 141 (2001) 365–374

Fig. 2. Data distribution among the processors in the procedure for the computation of the dealiased product. (a) Original data in the wavenumber

space, (b) data after expansion of the non distributed directions, (c) scheme after executing the 1D inverse FFT in the non distributed directions,

(d) data after transposition and expansion in the former distributed direction (see §3.3). The figure exemplifies the case of 4 parallel processors:

the greatest possible value of np is equal to the value of the truncation parameter N/2.

Consequently, in the code only one direction in the

wavenumber space is distributed among the proces-

sors, leaving to each processor the full data in the other

two directions (see Fig. 2(a)).

Let us come nowmore specifically to the main prob-

lem of the computation of the nonlinear term in Eq. (8)

or (10). It is evaluated using the dealiased pseudospec-

tral method: the data are first transformed in the phys-

ical space where the pointwise multiplication is per-

formed, then the result is transformed again in the

wavenumber space.

As always, the operation of transformation, per-

formed using the FFT algorithm, is a global procedure

that uses information from all the data and for this rea-

son it is the very central point of the parallel appli-

cation. In the following two paragraphs we detail the

dealiased non linear term computation as well as the

parallel data transposition.

We point out that the present organization of the

code limits the communication events among the

processors into the dealiased transposition within the

FFT computation. A more classical organization based

on a preliminary expansion of the data matrices in

all the directions should have inevitably introduced,

in the parallel context, further communication occur-

rences.

3.2. Dealiased pseudospectral product computation

The computation of the Fourier coefficient of the

non-linear convective terms in (8) through the straight-

M. Iovieno et al. / Computer Physics Communications 141 (2001) 365–374 369

forward application of the pseudospectral transform

method introduces aliasing errors that should be re-

moved. Because the aliasing error is asymptotically no

worse than the truncation error (see [5], pp. 118, 123)

this procedure might be strictly necessary only when a

high number of grid points cannot be used.

The computation of an aliasing error-free product

may be performed using various techniques, mainly

the truncation or padding technique [20] or the phase

shifts [23,24] technique. The first, referred to as

the 3/2 rule, evaluates the discrete transforms over

3/2N points and extends to three dimensions in a

straightforward manner. It is, among the procedures

which remove completely the aliasing error without

reducing the number of active modes, the one that

in practice (N > 16) requires the smallest number

of operations per mode, see again [5], p. 206. It

consists of an expansion of the matrices containing the

Fourier coefficients from a dimension equal to N to a

dimension equal toM = 3N/2. The expansion is done

adding zeros to the coefficients representing the extra

wave numbers.

The product is pointwise computed in the finer mesh

obtained after the computation of the inverse trans-

form of the velocity components under multiplica-

tion. The result is transformed again in the wavenum-

ber space using the three-dimensional FFT procedure.

It is convenient to combine the expansion procedure

and the inverse transform algorithms with associated

transposition, because this leads to a reduced number

of one-dimensional FFT computations and to a single

event of communication among processors.

The procedure used is constituted by the following

steps:

(1) Expansion in the non distributed directions (k1
and k2):

ũ(k1, k2, k3)=

{

û(k1, k2, k3) if |k1, k2|6
N
2 ,

0 otherwise;

ṽ(k1, k2, k3)=

{

v̂(k1, k2, k3) if |k1, k2|6
N
2 ,

0 otherwise.

This brings matrices of dimensionN×N×N/np

to matrices with dimensions M × M × N/np ,

where np is the number of processors.

(2) Execution of the one-dimensional inverse FFT in

the expanded directions (only on the 1D sub-array

is which elements are not all equal to zero):

ũ(j1, k2, k3)←
1

M

M−1
∑

k1=0

ũ(k1, k2, k3)e
− 2π i

N k1j1,

ũ(j1, j2, k3)←
1

M

M−1
∑

k2=0

ũ(j1, k2, k3)e
− 2π i

N k2j2 .

(3) Parallel transposition and expansion in the former

distributed third direction. This yields to the ex-

panded field:

˜̃u(j1, k3, j2)=

{

ũ(j1, j2, k3) if |k3|6
N
2 ,

0 otherwise.

Here and in the following the double tilde symbol

represents an expanded variable.

(4) Execution of the FFT in the second (former third)

direction.

(5) Computation of the pointwise product

˜̃u(j1, j3, j2)← ˜̃u(j1, j3, j2) ˜̃v(j1, j3, j2).

(6) Computation of the three-dimensional FFT, lead-

ing to ˜̃u(k1, k2, k3). This is done through the fol-

lowing four-stage procedure, that includes again a

transposition at the third stage:

˜̃u(k1, j3, j2)←

M−1
∑

j1=0

˜̃u(j1, j3, j2)e
2π i
M k1j1,

˜̃u(k1, k3, j2)←

M−1
∑

j2=0

˜̃u(k1, j3, j2)e
2π i
M k2j2 ,

˜̃u(k1, j2, k3)← ˜̃u(k1, k3, j2),

˜̃u(k1, k3, k2)←

M−1
∑

j3=0

˜̃u(k1, j3, k2)e
2π i
M k3j3 .

(7) Truncation of the data from M modes to the

original N modes.

3.3. Parallel transposition

Parallel transposition occurs two times in the pseu-

dospectral computation of the convolution sums:

throughout the inverse FFT of expanded data and

throughout the FFT of the result of the product compu-

tation. The first time it is associated with the data ex-

pansion, i.e. the data are transposed while being stored

in an expanded 3D matrix—according to the 3/2 rule

of dealiazing—while the second time the dimension of

370 M. Iovieno et al. / Computer Physics Communications 141 (2001) 365–374

the matrix of data storage is left unchanged. In the fol-

lowing, we refer primary to the first one, the scheme of

the latter may be recovered leaving equal dimensions

in all directions.

The transposition algorithm is implemented in a

dedicated subroutine. Variable f (k1, k2, k3) will con-

tain in input the data to be transposed, in output the

result of the transposition.

With reference to Fig. 2, the data of each processor

i are composed into elementary blocks Bij (k1, k2,

k3) that are to be transposed and transferred to the

other processor. The index j indicates the logical

distance among the processors. Each processor i

must first identify the data block to be transferred

to the processor i + j , then it must transpose it and

the data block to be received from the processor

i − j . A call to a routine send-receive-replace of

the Message Passing Interface Library occurs and

then the two transfers take place. Note that this

straightforward communication pattern is functional

to the portability of the code. In case this last is

not required, things could be improved taking into

account the underlying network topology or making

use of machine specific communication libraries such

as “Cray shmem”.

Finally, each processor allocates the data received

in the correct position, see the scheme in the following

part of this paragraph.

N and M = 3N/2 are the original dimensions

of data matrices, nloc = N/np and mloc = M/np

are the correspondent dimensions—in the distributed

direction—of the matrices contained in each proces-

sor. Procedure details are the following.

There is a single preliminary cycle (j = 0) wherein

each processor must transpose and collocate the data

of the block Bi0:

g
(

j1, j2 + I (i), j3
)

← f (j1, j3 + imloc, j2)

∀j1, j2 = 0..M − 1, ∀j3 = 0..nloc− 1;

I (i)=

{

npi if i < np/2,

M − (np − i)nloc otherwise.

Then, a main loop is executed:

for j = 1, np − 1:

(1) Each processor defines the destination and source

processors: 1

id← i + j, is← i − j.

(2) Each processor creates and transposes the block to

be sent

BT
ij (j1, j2, j3)← f (j1, j3 + idnloc, j2)

∀j1, j2 = 0,M − 1, ∀j3 = 0..nloc− 1.

(3) A send–receive operation occurs through a call

to the routine MPI_send_recv_replace [19]. Each

processor sends to the destination processor its

block Bij and receive from source processor

the relevant block, which is stored in the same

memory allocations that was containing the data

sent.

(4) Each processor allocate the received block in the

new position:

g
(

j1, j2 + I (is), j3
)

= BT
isj

(j1, j2, j3)

∀j1, j2 = 0, ..,M − 1, j3 = 0..nloc− 1.

End of the loop.

4. Timings and efficiencies of the computation

procedure. Validation over a physical application

Looking at the benchmark results of the code,

applied to the simulation of a decaying homogeneous

turbulent field, see Fig. 3, the Cray T3E appear to

be the slowest of the three tested architectures, while

the SGI ORIGIN and the IBM SP3 have similar

performance. On the other hand, if we look at the

speed up S—defined as the ratio of the run time

required by one processor referred to the run time

required by np processors—see Fig. 4, the present

code on the Cray T3E displays a speed up close to

the ideal one at all grid sizes. The corresponding

efficiency E = S/np is always close to 1. IBM

SP3 also displays a good speed up but the curves

move away from the ideal behaviour well before the

curves relevant to the CRAY T3E happen to do. The

efficiency for this machine results inside the interval

0.8–1.1. The speed up relative to the SGI ORIGIN

shows both a strong super-linear behaviour followed

1 A circular permutation of indexes is assumed.

M. Iovieno et al. / Computer Physics Communications 141 (2001) 365–374 371

Fig. 3. Execution time as a function of np for ten iterations of the main code loop: (−−−) CRAY T3E 1200, (·····) SGI ORIGIN 3800 R14000

500 MHz and (−−−) IBM SP3 Pwr3 nightawk II 375 MHz. Symbols refer to the different grid sizes: 323 (•), 643 (△), 1283 (◦) and 2563 (⋄).

Fig. 4. Comparison of the code speed up on different architecture: (−−−) CRAY T3E 1200, (·····) SGI ORIGIN 3800 R14000 500 MHz, (−−−)

IBM SP3 Pwr3 nightawk II 375 MHz. Symbols refer to the grid sizes: 323 (•), 1283 (◦).

by a fast saturation for the 643 and 1283 grids. The

efficiency is in the range 0.75–1.2.

We observe that the ratio R1 between the time spent

to compute the non linear terms in (8), (9) (see in §3.2

the products of the velocity components in the space

of wave numbers) and the total computation time of

one time step turns out to be in the range 0.75∼ 0.94,

independently from the machine used and the number

372 M. Iovieno et al. / Computer Physics Communications 141 (2001) 365–374

Table 1

First lines in each block: ratio R1 between the time spent to compute the non linear terms and the total computation time of one time

step, for different machines and number of parallel processors. Second lines in each block: ratio R2 between the time required by the

transposition procedure and the time spent to compute the non linear term

np Cray T3E SP3 ORIGIN

32 64 128 32 64 128 256 32 64 128 256

1 0.914 0.910 0.944 0.906 0.877 0.943 0.919 0.822

0.042 0.042 0.033 0.370 0.422 0.027 0.068 0.069

2 0.909 0.912 0.943 0.910 0.878 0.940 0.909 0.788

0.071 0.067 0.060 0.134 0.131 0.080 0.154 0.187

4 0.898 0.903 0.944 0.918 0.879 0.880 0.941 0.909 0.753 0.791

0.087 0.083 0.080 0.126 0.140 0.143 0.099 0.177 0.205 0.233

8 0.885 0.893 0.886 0.929 0.919 0.890 0.879 0.917 0.912 0.876 0.758

0.105 0.092 0.066 0.141 0.373 0.130 0.163 0.319 0.143 0.237 0.238

16 0.870 0.865 0.862 0.899 0.904 0.897 0.858 0.818 0.906 0.897 0.757

0.134 0.099 0.072 0.265 0.218 0.152 0.145 0.444 0.205 0.200 0.217

32 0.832 0.902 0.891 0.866 0.910 0.862 0.717

0.069 0.430 0.243 0.209 0.236 0.464 0.245

64 0.803 0.871

0.075 0.285

of Fourier modes simulated, see Table 1, first row of

data. The ratio R2 of the time taken by the processors

communication and the sum of the times spent for the

FFT and for the communication itself is shown in the

second rows of data in Table 1.

The ratio R2 slightly increase on the T3E with

the number of processors, and display large fluctu-

ations on the SP3 and ORIGIN (see Table 1, sec-

ond row), though on average still increasing with the

number of processors. The increasing of R2 with the

number of processors is a consequence of the algo-

rithm saturation, while the relevant fluctuations are

due mainly to cache effects and an high process to

process latency. The large fluctuations are not present

on the T3E because the cache size is small com-

pared to the data set and because the operating sys-

tem interferes with the user process on the com-

puter nodes much less than for the other two archi-

tectures.

As an example of the general performances of

the present code we show a three-dimensional power

spectrum computation of a decaying homogeneous

isotropic field at a moderate Reynolds number based

on the Taylor microscale (Reλ ∼ 60), to which there

correspond the set of experimental data by Comte–

Bellot and Corrsin [8]. The field is simulated using the

direct numerical approach over a mesh of 1283 points.

The spectrum of the turbulent energy is illustrated in

Fig. 5 where it is compared both with the experimental

spectrum by Comte–Bellot and Corrsin and with the

spectrum obtained by Mansour and Wray [17] by

means of a direct numerical simulation over 2563

points. Apart from the region at low wave number

that depends on the peculiarities of the initial random

field and for which the limitation in prediction due to

the finiteness of the computational box is unavoidable,

the agreement is very good for kη > 0.02, i.e. in the

region where the energy distribution corresponds to

the inertial range.

M. Iovieno et al. / Computer Physics Communications 141 (2001) 365–374 373

Fig. 5. Energy spectrum of decaying homogeneous and isotropic

turbulence: (−−−) present simulation at Reλ = 54 (Cray T3E),

(· · · · ·) 2563 DNS by Mansour and Wray [17] at Reλ = 56,

(•) experimental grid turbulence by Comte–Bellot and Corrsin at

Reλ = 61 [8].

5. Conclusions

We have developed a parallel algorithm using the

pseudospectral method for the direct numerical sim-

ulation of the three-dimensional Navier–Stokes equa-

tions solutions. The algorithm is applicable to direct

simulations and may be easily modified for use with

the large eddy scale simulation method. The novel as-

pect that this algorithm presents is a data transposition

technique directly coupled to the dealiazing procedure

based on the rule of the “3/2”. Also along the direction

of data distribution it allows the use of standard single-

processor Fast Fourier Transform (unidimensional and

real to real) and keeps at the same time the number of

physically significant Fourier modes equal to that cor-

responding to the domain discretization.

The algorithm has not been conceived for a spe-

cific machine. It shows a good portability among dif-

ferent architectures as it is demonstrated by the con-

tent of Table 1, where the ratio between the time spent

to compute the non linear terms of the Navier–Stokes

equations and the total computation time required by

one time step is seen to remain nearly constant re-

gardless the machines, the number of parallel proces-

sors employed and the spatial discretization adopted.

In its turn the fraction of time required by the trans-

position procedure inside the time interval required by

the product computation, i.e. essentially the time spent

for the communication among the processors, is very

low (few percents) when the behaviour of the machine

does not depend on the existence of a cache memory

and rises to a 10–20% for the other category of ma-

chines, whether working with a number of processors

for which the speed-up is still close to the ideal one.

For a problem—homogeneous isotropic turbulence—

with a mesh ranging from 323 to 2563 the efficiency

of the procedure turned out to be very high: inside the

interval 0.9–1 for the Cray T3E for np up to N/2, in-

side 0.8–1.1 for the IBM SP3 and inside 0.75–1.2 for

the SGI ORIGIN 3800 up to np =N/4. The code was

written using the FORTRAN language without opti-

mizations.

Acknowledgements

We acknowledge partial support from CINECA

(Centro di calcolo interuniversitario dell’Italia nord-

orientale) and from ASI (Agenzia Spaziale Italiana).

References

[1] A.J. Basu, A parallel algorithm for the solution of the three-

dimensional Navier–Stokes equations, Parallel Comput. 20

(1994) 1191–1294.

[2] M. Briscolini, A parallel implementation od a 3D pseudospec-

tral bases code on the IBM 9076 scalable POWER parallel sys-

tem, Parallel Comput. 21 (1995) 1849–1862.

[3] D.A. Briggs, J.H. Ferziger, J.R. Koseff, S.G. Monismith,

Entrainment in a shear-free turbulent mixing layer, J. Fluid

Mech. 310 (1996) 215–241.

[4] C. Cambon, N.N. Mansour, F.S. Godeferd, Energy transfer in

rotating turbulence, J. Fluid Mech. 337 (1997) 303–332.

[5] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral

Methods in Fluid Dynamics, Springer Verlag, Berlin, 1988.

[6] C. Canuto, C. Giberti, Parallelism in a highly accurate algo-

rithm for turbulence simulation, in: D.J. Evans, C. Sutti (Eds.),

Parallel Computing. Methods, Algoritms and Applications,

Adam Hilger, Bristol and Philadelphia, 1988, pp. 157–168.

[7] S. Chen, X. Shan, High-resolution turbulent simulation using

the Connection Machine-2, Comput. in Phys. 6 (1992) 643–

646.

[8] G. Comte-Bellot, S. Corrsin, Simple Eulerian time correlation

of full and narrow band signals in isotropic turbulence, Fluid

Mech. 48 (1971) 273.

[9] K.T. Dang, Evaluation of simple subgrid-scale models for the

numerical simulation of homogeneous turbulence, AIAA J. 23

(1985) 221–227.

374 M. Iovieno et al. / Computer Physics Communications 141 (2001) 365–374

[10] P.F. Fisher, A.T. Patera, Parallel simulation of viscous incom-

pressible flows, Ann. Rev. Fluid Mech. 26 (1994) 483–527.

[11] Y. Gagne, B. Castaing, A universal representation without

global scaling invariance of energy spectra in developed

turbulence, C. R. Acad. Sci. Paris, serie II 312 (1991) 441–

445.

[12] E. Jackson, Z.S. She, S.A. Orszag, A case study in parallel

computing: I. Homogeneous Turbulence on a Hyphercube,

J. Sci. Comput. 6 (1991) 27–45.

[13] A. Jameson, H. Schmidt, E. Turkel, Numerical solutions of the

Euler equations by finite volume methods using Runge–Kutta

stepping schemes, AIAA Paper (1981) 81–1259.

[14] P.K. Jimack, N. Touheed, An Introduction to MPI for Compu-

tational Mechanics, University of Leeds.

[15] J. Jimenez, A.A. Wray, P.G. Saffman, The structure of intense

vorticity in isotropic turbulence, J. Fluid Mech. 255 (1993) 65–

90.

[16] M. Lesieur, O. Métais, New trends in large eddy simulations

of turbulence, Ann. Rev. Fluid Mech. 28 (1996) 45–83.

[17] N.N. Mansour, A.A. Wray, Decay of isotropic turbulence at

low Reynolds number, Phys. of Fluids 6 (1996) 808–813.

[18] C. Menevaeau, J. Katz, Scale-invariance and turbulence mod-

els for large-eddy simulation, Ann. Rev. Fluid Mech. 32 (2000)

1–32.

[19] Message Passing Interface Forum, MPI: a Message-Passing

Interface Standard, 12 June 1995.

[20] S.A. Orzag, Numerical simulation of incompressible flows

within simple boundaries, I. Garlekin (spectral) representation,

Stud. Appl. Math. 50 (1971) 293–327.

[21] R.B. Pelz, The parallel Fourier pseudospectral method,

J. Comput. Phys. 92 (1991) 296–312.

[22] T.P. Ray, Jets: a star formation perspective, in: S. Massaglia,

G. Bodo (Eds.), Astrophysical Jets: Open Problems, Gordon

& Breach Sience Publishers, 1996, p. 173.

[23] R.S. Rogallo, ILLIAC program for the numerical simulation

of homogeneous incompressible turbulence, Nasa TM-73203,

1977.

[24] R.S. Rogallo, Numerical experiments in homogeneous turbu-

lence, Nasa TM-81315, 1981.

