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Two different types of instantaneous wall boundary conditions have been proposed for resolved
large scale simulations that extend inside the viscous sublayer. These conditions transfer the
physical no-slip and impermeability/permeability information, which can only be rigorously applied

to the unfiltered variables, to the filtered variables. The first condition is universal, while the second
one specifies the wall stress and relevant distribution and can be used to treat inverse flow problems.
The filter scale close to the wall is a function which varies according to its position and thus the
problem of the noncommutation of the filter and differentiation operators arises. Used together with
the explicit noncommutation procedure by lovieno and Tordella, these boundary conditions
constitute a wall treatment which could improve the use of the large-eddy methodology in relation
to aspects that are independent of the modeling of the subgrid scale motion. When applied in the test
case of the plane periodic channel, intentionally using the most crude subgrid scale model
(Smagorinsky, with no dynamic procedure or wall damping fungtimnprove its efficacy, the
proposed near-wall treatment yielded resolved large-eddy simulations which compare well with
both direct numerical simulations and with experimental data. The effects of the Reynolds number
on the structure of the flow are retained. Distributions of the noncommutation error on the turbulent
solution are also reported. @004 American Institute of PhysidDOI: 10.1063/1.1783371

I. INTRODUCTION lowing: (1) the transfer of the wall physical conditions,
. . . which can only be rigorously applied to the unfiltered vari-
The large-eddy simulatioL ES) method is probably go- ables, to the filtered variables aigg) the noncommutation

Ing to be one of the most frequently used tools to predict thepropert loss between the filter and differentiation opera-
behavior of turbulent flows for many different physical and _. Y . . )
. . L C Fons, which affects the simulation of unhomogeneous fields,
engineering applications. Among these applications, wal ch as the wall flows, in which the filter scale varies greatl
flows constitute a separate class, due to the peculiarities ?jf?:cordin to the osit’ioﬁﬁ- 8x)]2°° In this situation q{he y
the near-wall dynamics that are related to important applica- 9 P vV '

tions in geophysics, hydrodynamics, and gasdynamics. Th%overnlng equations change structure, because a noncommu-

. fation term must be introduced in correspondence to each
turbulence near the wall is very unhomogeneous and not in

equilibrium. The diffusive vorticity generation is coupled spatial differential term. The change in the filtered governing

and is of the same order as the unsteadiness and nonlineari?)ﬂula:t(')?nﬁi 'T]trgiucr:s d\éa;:itrlr?t?;r t(li)lc;[\t]vilr tr;]l‘émerr(')cball(la;()lg;'c:ﬂé
Such a complex situation is not easily synthesized in aR gh Rey : > P
oundary conditions for the filtered field can be treated by

model, because, close to the wall, the categories on whic dooti f the classical imated diti that
the turbulence modeling of homogeneous or nearly homogea-l opting one ot the classical approximated conditions tha

neous flows relies are not valid, the conceptual separatiohe'Ies on the introduction of special wall models, which rep-

between the large and small scales is not possible, and hgsent the inner layer dynamigsisually in a Reynolds-

asymptotics similarity is not observed in practical roblems.""ver"’lged sense, see the review by Piomelli and Balaras, Sec.
ymp Y P P (Ref. 6], and by putting the first grid point used by the

It is crucial for physicists and engineers, who nevertheles . L ) :
phy g rge-eddy simulation inside the logarithmic laysee Ref.

must produce approximate but reliable forecasts to improv h 1 | huma ; lliet al.9
the use of the method as much as possible independently g the wall-stress models by Schum l?md Piomelliet al,
the physical features of the subgrid scale model that ifhe two-layer models by Balaras al,™ the detached eddy

. . e 12.
adopted. For this purpose it is important to consider the folSimulation approach by BaggEt_'and Nikitin et al.™). These
models were conceived to avoid the prohibitively expensive
dAuthor to whom correspondence should be addressed. Telephone: OO&Ompl'ltatlomjII COSt. of resolvmg the Wa.” Iaygr in hlgh R.ey_
011 564 6812; fax: 0039 011 564 6899; electronic mail: NOIdS number environmental and engineering applications.
daniela.tordella@polito.it However, at a fundamental level, with regard to the LES
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methodology, and to resolve the near-wall dynamics, it is I<y :'m."< 7
also acceptable to place grid points inside the viscous sub
layer.

The boundary conditions for the filtered variables should
be different from those that are canonical for the unfiltered
variables, i.e., the no-slip and impermeability conditians _,
=0 at the wall. First, the filtering operatid@e.g., the volume &
average is ill defined for grid points placed on the wall =
because, in this case, the filter width extends beyond the wal
boundary(i.e., outside the flow domajnsecond, a filtering
volume in contact with the wall, but entirely merged within
the domain, will give averaged velocities that are different
from zero and which are placed in the dynamical center of ofnputationlal grid
the average volume which will always be located at a finite T T T T T T
distance from the wall. 5 10 15 y*

On the other hand, the alternative option of the grid re- o _ o _

. . . . . _FIG. 1. A schematic view of the shifted boundary conditions, the filter, and
finement(i.e., the filter width that goes to zero as the wall is grid.

approacheylis not clearly defined. In this case in fact it is not

possible to automatically determine where the shift from

LES to DNS takes place. This shift would necessitate thescale, are obtained using series expansiofi dfi approxima-
change of the evolution equations from the filtered NS vertions based on finite differences and introducing two succes-
sion (LES) to the unfiltered N§DNS). Since this change is sive levels of filtering. A brief outline of this procedure is
not carried out, which would inevitably imply the introduc- given in Sec. lll. The distribution of the noncommutation
tion of a domain decomposition, the simulation cannot beerrors on the Reynolds stresses is given in Sec. IV.
considered as being based on a consistent problem form. The results that were obtained when using the present
Furthermore, even in the hypothesis of having consistentlyall treatment applied to the LES of the channel flow and
split the domain to carry out the hybrid LES-DNS, it would obtained by utilizing the most crude SGS mo¢@imagorin-
mean adopting a time step which must fit the DNS requiresky, with no dynamic procedure or wall damping funcion
ments close to the wall. The temporal integration scale foare discussed in Sec. IV. The simulations compare well with
the DNS is faster than that required by the LES, but since ithe direct numerical simulatios™ and with laboratory

is not possible, advancing on time, to differentiate the tem-observations®™® The simulations show the correct Rey-
poral steps into different regions of the computational do-nolds number dependency. Given this, much greater progress
main, the DNS requirement would take precedence over thean be expected if the dynamic proceddr@ and models
LES one, and this is not convenient. which allow for significant nonlocal and nonequilibrium ef-

It is here proposed to shift the boundary conditions forfects are use&2*The concluding remarks are given in Sec.
the filtered field onto a surface that lies on a first level of gridV.
points and is parallel to the wall, at a distance of the same
order as the viscous length. The transfer of the informationl. NEAR-WALL TREATMENT
that is relevant to th_e physmal pr_opertles of_the_wall IS aC-7 \vall conditions for the filtered variables
complished by considering a series expansiordifor the
filtered variable, at the first layer of points. If associated to a  The shifting of the boundary conditions for the filtered
Taylor expansion of the unfiltered variable at the wall, thisfield on a surface that lies beside the wall at a distanoé
yields a first kind of condition that is universal in character.the same order as the viscous length [y=0({,)

If the & expansion is instead related to a Mac Laurin expan=0(d&yi,) ], see Fig. 1, is here proposed. The first level of the
sion of the unfiltered variable at the wall, a second kind ofgrid points should in turn be positioned on the shifted bound-
boundary condition is obtained which is suitable to impose ary. This shift offers a twofold advantage—first, the depen-
known distribution of wall stresses, as normally asked in thedent variables are correctly determined, as it is possible to set
context of inverse mathematical problems. The boundary local volume of integration which does not cut the physical
condition formulations are described in Sec. Il. The relaed boundary; and second, since the shifted boundary is close to
priori tests'® which showed a correlation with DNS ddtd®  the wall, it is possible to transfer the physical information
as high as 0.97 for a boundary shift of five wall units, arethat corresponds to the no-slip and impermeability/
described in Sec. Il A. permeability conditions to the shifted condition through a

As previously explained, the other feature that has beeseries expansion. An expansion in seriesdaif the filtered
implemented in the simulations is the noncommutationvariable can in fact be associated, at the first layer of points,
proceduré. This is based on an approximation of the differ- to a Taylor or a Mac Laurin expansion of the unfiltered vari-
ent noncommutation terms in the governing equations aable at the wall, where the filter length reaches the minimum
functions of theé gradient and of they derivatives of the value normal to the wall,,,. While using this boundary
filtered variables. The anisotropic noncommutation approxiformulation, one is aiming at simulating the inner viscous
mating terms, of the fourth order of accuracy in the filterlayer in the regiory* <50, which requiress,,;,=y~ 1-5.

Filtering Volume

== r=-=="r--"1"-"

Boundary for the filtered field
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Let us consider the class of integration volumes 1 y?
() =1(0) +yo(H) + 5 aVD]ogn =S (H, (1D
_ 3.|( 7L 72 M3
—{§ER.< =, ) <1} (1)
01 6 O3

where the filtered variable at each instant depends explicitly
where 8(x)=(8,(x), 8,(x), 85(x)) and the transformation;;  on the positiony, the values of its first and second deriva-
= 5§ [with det(dn/ 9&)=8,15,0; and where no summation tives, and the wall value of the unfiltered variable, which
is implied] has been introduced. Let us consider the averaggtroduces the physical information. This condition—which
operation for the variablé(x)=f(x;+ §,): in the following is called condition I—is an instantaneous
1 1 condition and it is universal because it can be applied to any
o= | fx+mdy=-] f(x+5&)dE, (2) kind of wall boundary. One should note that, according to the
Vslv, Vily, theory established by KrefSsfor Dirichlet differential prob-
where1=(1,1,1 andV,=V,/ 6,8,5, lems discretized with a finite-difference scheme with order

For th ke of simplicity. let der th O(8P) at inner points andd(8PY) at points close to the
or the sake of simplicity, 1€t us now consiaer the Case[)oundary, the error of the discrete solutiorDi&sP) through-
of a flat wall flow. Here the filter can be opportunely repre-

Theref h h f [
sented by the widely used notatiadix) = (AX. ¢(y)Ay. A7) out. Therefore, with such a boundary condition formulation

th tantsAx. A dA d wh < th dinat and truncating the terms of ord@( &%), the fourth order of
with constantsix, Ay, andAz and wnerey IS the coordinate accuracy reached for the approximation of the noncommuta-
normal to the wall. TheS expansion for a general variabig

ft tt A, yield tion term proposed by lovieno and Tordéltzan be expected
after Settingaty) = dun=emnd, Yields to be preserved. In the present simulation, yhaerivatives

(B(y) = f(y) + L[f]82,,+ O(5E. ), (3)  of the filtered variables ay=y have been calculated using
- - one-sided discrete operators.
where Another similar type of boundary condition can be writ-

) ) ten by equatmg(?) to the Mac Laurin seried(y)=f(0)
L[]=1aV2, V= (9524_ ( (SAX ) Pt <5A_Z) B (@) rYof ly=0t(y?/2)df |-+ O(y®), which gives the condition
min min

y? a _ -
gde, (5) () =1(0) +ydy f |0+ _Eai fly=o+ 552minV2[<f>]- (12

V1 2

In the case of a steadgin the mean turbulent flow it is

possible, with this formulation, to transfer the information

relevant to the time average of the wall shear stress distribu-

tion and its derivative to the filtered field. Conditioh2)—

L[(F)] = L[]+ L[5, L[FI1 + O(s,) = L[f]+O(&,). which in the following is called condition Il—is an instanta-

neous condition. However, it is physically reasonable to

©) insert the time averaged values of the wall stress only in the

and where it should be recalled that, dug1p and(2), the
coefficients of the odd powers @,;, are zero. By applying
the operatoL to (3) one obtains

As a consequence3) can be written as case of flows which are steady in the mean, as is the case of
the example that we have considered in this paper. However,
fy) = (F)(y) = SinkL(F)] + O( Sin) - (7)  this is not the only possibility. In fact, if detailed information

) . o on the temporal and spatial variation of the wall stress are
In turn, to transfer the no-slip and impermeability informa- ayailable, it would in fact be better to insert them into infield
tion, which applies ay=0, let us consider the Taylor expan- condition I1. The innovative and original character of condi-

sion along the normal to the wall, tion Il is that it allows the flow to be fed with different wall
yz information, which, apart from the pure no-slip condition,
f(0) = f(y) - ya,f(y) + = ,9 Wfy) + O(y3) (8)  also includes information on the time and space fluctuations,

or possible evolutions of the wall stress along the wall. All
this can be gathered in one single condition. This is feasible

Since relation(6) can be generalized as because, having placed the condition relatively close to the

gm wall—at a distance of almost one viscous length—one can

—f(X)‘ —<f>(X) +0(8%), m=1,2,.., (9 use a Mac Laurin series expansion to transfer the physical
information at the wall to the infield condition. In other

expansion(8) can be written as words, a convenient situation is obtained: instead of using

the physical boundary—the wall—where only one boundary
condition (bc) can be placed for each variaklen the vari-
able itself or on one of its derivatives in the direction normal
to the wal), one can give a plurality of information concern-
By equating(7) and (10), while recalling definition(4), and  ing the values of the variables and of their relevant wall
truncating the third-order terms, a new boundary condition iglerivatives to the field, with just one condition and without
obtained aty=y, overconstraining the flow.

2

y
f(y) = f(0) +yaf) = Z o) + O o) (10)

Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



3938 Phys. Fluids, Vol. 16, No. 11, November 2004 lovieno, Passoni, and Tordella

A solution accuracy of the fourth order could also be 1.0
expected when using this boundary conditisee the previ-
ous commenis It must be noticed that, with this kind of
formulation, the shear stress distribution along the wall can L
be imposed to the field, as can the related characteristics sucl~7
as the intensity of the wall roughness. In this case, this
boundary condition can be applied to inverse mathematical
problems.

B. A priori test on the approximate boundary
conditions L

The correlation between the filtered values that are ob-
tained by the present shifted boundary conditions and the
filtered values that are obtained by a direct numerical simu- ¢ ¢ . L .
lation can be defined, as a function of the distance of the
shifted boundary from the wall, as 0 5 vt 10

min

C = (U ons— (Wong (U = (U AVar (U ongvar(u)),
(13)

1.0

where(u;)pns are the filtered data from the direct simulation
data basePassoniet al®), (u)) have been computed from -
(11) and (12) by introducing the filtered direct simulation
data into the right-hand side, the overbar means the average
over the surface parallel to the wall, and var is the variance.
For Re=180(the Reynolds number for which a wide set of
instantaneous fields was availapleig. 2 shows that both
boundary conditions | and 1l yield a correlati@which is
over 0.97 for the three velocity components up to a distance
of five wall units and goes down to 0.8, 0.88, 0.7 for
(wy,{v),{w), respectively, at seven wall units.

08T

C. Noncommutation treatment

. . 10
The noncommutation procedure and the new wall condi- y+m,~n

tion models together constitute the new treatment for wall
turbulence that is here proposed. The main applications th G.2. Ana pri(_Jri test on th_e approximate bound_ary conditions: correlation

. . . . . . evel as a function of the distangg,,=y of the shifted boundary from the
require a highly variable filtering in LES are wall flows. wall. Top panel condition I, Eq(11); bottom panel condition II, E¢12).
They must be represented throu@ accessory conditions
that are consistent with the LES methodology, on the one
hand, andb), on the other hand, a possibly explicit noncom- lovieno and Tordelth (see there, Sec. Il for the isotropic
mutation procedure. As explained in the Introduction, aparfilter configuration and the Appendix for the general aniso-
from the matter relevant to the quality of either dynamical ortropic and the wall-bounded flow configuratigrthe aver-
not subgrid model, the no-slip condition associated to the usaged governing equations can be written as
of a filter width which goes to zero as the wall is approached&m> =)y (14)
is not a fully consistent treatment for large-eddy simulations "¢ NS
of near-wall turbulence.

A brief description of the noncommutation procedure is P Ua* 3w ui)s) + p) 5= V‘?izj<ui>5_ ‘?iRi(iﬁ)
given in the following. When3, the linear scale of filtering, == C] () KU} ) = C/ ((PYa) + 1Cj (W) o) +cj’(R§j")),
is not uniform in the flow domain, the averaging and differ- (15)
entiation operations no longer commute. This leads to inho-
mogeneous terms in the motion equations that act as sour@e present procedure approximates the noncommutation
terms whose intensity depends on the gradient of the filteterms on the right-hand side ¢014) and (15) by means of
scale 6 and which, if neglected, induce a systematic errorseries expansion i@ of finite difference approximations of
throughout the solution. One kind of noncommutation termthe space derivatives and by introducing a successive level of
for each differential term is present in the governing equafiltering. An accuracy of the fourth order is reached with
tions. By introducing the subgrid turbulent stressesrespect tos.
Ri(j‘g):<ui>,5<uj>5—<uiuj>5 and the noncommutation terms Let us recall that the anisotropic noncommutation term
C!,C;, for the first and second derivatives, as discussed byf the first derivativeC;, defined by
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, af 9 filtered equations are not presé‘ﬁthe filtered equationgl4)

Ci((fy) = ax /s Ema: (16)  and(15) are invariant under Galilean transformations.
1 1

can be represented as the sum of the products of the filtgn. DATA ANALYSIS RATIONALE

space derivatives and the filter derivatives of the filtered vari-

able: The large-scale flow field is obtained by directly inte-
grating the filtered, three-dimensional, time dependent
) 3 9 o 9 Navier—Stokes equations. The simulation quality depends to
Cl(Ha=-2 &—Xg(ﬂs- (17)  a great extent on the model that is used to represent the
j=1 ¢4 Y

small-scale field motions. However, the present study con-
gemns features of the LES method which are intrinsically in-
dependent of the subgrid scale model that is used in the
simulation. Furthermore, if, on the one hand, the interference
of the efficiency of the subgrid scale turbulence model with
the performance yielded by the use of the new boundary
conditions and noncommutation procedure must be avoided,
on the other hand, it is not evident, at the state of the art,
which is the best near-wall SGS model to use. Given this, it
~, do 1 was eventually decided to accept a systematic error in the
Cy((a) = - TyM(<<f>5>2¢(y)Ay_<f>5)' (18)  simulation prediction close to the wall by implementing the
simplest and perhaps least appropriate SGS model, which is
Similarly, the anisotropic noncommutation term of the the Smagorinsky model used without the dynamic procedure

For flow fields where the domain grid needs to be stretche
along only one direction, say, and whose typical examples
are two-dimensional wall-bounded flows, the last represent
tion yields very simple approximation formulas. By adopting
the notationd(x)=(Ax, ¢(y)Ay,Az) with constantsAx,Ay,
andAz, the anisotropic approximation for the first derivative
noncommutation term results

second derivatives, being defined by or a wall damping function. Thus, priori foreseeing a poor
oof P agreement in a portion of the viscous sublaglet us call it
Cl({f)g) = Lz - —(Hs (19 the SGS model systematic error, SGSm3ke behavior of
IX[ s IX the present large-scale simulations is sought and compared

. with direct numerical computations and laboratory observa-
can be written as

tions.
3 (925j J 3 36, P ' 'The gpverning gquation(ﬂ4) and (15) were integ.ra.lted.
Cl(f)=—> ———(fs—2> — (s in time using a hybrid pseudospectral fourth-order finite dif-
! i N =1 I% \ 98 % -,
=1 9% 99 =1 94 (R ference method. An explicit third-order Runge—Kutta scheme
3 (9606, P was used. According to the concept of minimal flow unit in
- (_J_> ) (200 near-wall turbulence by Jimenez and M&frthe dimensions

k=1 \ 9% 9% ) 96 6 of the computational domain were chosen ash2h, 7h,

whereh is the channel mid height, in the streamwise, cross-
wise, and spanwise directions, respectively. Periodic bound-
ary conditions were applied in the streamwise and spanwise

Again, in analogy with what has been done for the first
derivatives the following approximation is obtained:

_ ¢(9)2/¢+ ((;y<P)2 diregtions. Conditiong'(ll) and Il (12) were applied as ap-
C;y((f>5):— 5 (L) 2008y ~ (P ] proximate wall conditions. The mesh was made up of 48
2¢%(y) X 65X 32 points for Re=180 and 84 129X 56 points for
dyep Re,=590. In the present channel flow simulations, while us-
= ——[(0(F) D20y — LD al. (21)  ing type Il boundary conditions, time averaged values were
¢(y) assigned for the wall stress, the nondimensional constant

It should be remarked that this procedure operates in thBressure gradient, and fa§7|0' ZE€ro.

physical space and does not rely on the use of a mapping It

function of the nonuniform grid. The present noncommuta- esults

tion procedure is based on the use of the volume averages; A few results concerning the near-wall dynamics of the
however it can be observed that it remains valid in the caseurbulent channel flow are compared in this section with di-
where a more general kind of filtering is adopted. In therect simulation result§Moser et al,'* Passoniet al®) and
general situation, the introduction of a weight functigi®) experimental laboratory resul'reEckeImanrf‘,6 Kastrinakis
only modifies the numerical coefficientsuch as the coeffi- and Eckelmand! Wei and WillmartH®) at Re=180 and
cienta in (5)] of the series expansion ia* which are only 590. The boundary conditions are shiftedyto=2 and 5.
functions of the filtering domain and of the weight function, The comparison is based on the mean velocity distribu-
if present. The noncommutation terms and its approximation, the distributions of the Reynolds stresses, the resolvable
tions remain unchanged, provided the weight function has &rbulence intensity, and the ratio between the kinetic energy
compact support. The compactness of the support allows thgroduction and the dissipation.

filtered variables to be fully supported inside the physical It should be noted that in most subgrid-scale stress mod-
domain. As a consequence, noncommutation terms asso@is, in particular in the most commonly used model by Sma-
ated to a finite or semi-infinite computational domain in thegorinsky, the eddy viscosity is determined by assuming that
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the small scales are in equilibrium. In the presence of mean 22 '
shear—and thus close to solid boundaries—this position o0 | Re=180 (a) |
causes excessive damping of the large-scale fluctuations an
viscous stresses and amplification of the subgrid-scale 18| _o .
stresses. Modifications were made to the Smagorinsky mode —o-= b (II)
in the near-wall region of the plane channels to force the
subgrid-scale stresses to vanish at the solid boundary througl 14 [
damping functiongMoin and Kim?2’ Piomelli et al.g) or a
dynamic proceduréGermancet al,'® Germand®) was intro-
duced. The present simulations that are carried out deliber- 10
ately neglecting the use of either the dynamic procedure or
damping function, due to the SGSmMSE, experience a slight
lower slope in the first part of the viscous sublayer, as far as 6T
the mean velocity, viscous stress, and Reynolds stress distri
butions are concerned.
Figure 3 shows the mean streamwise velocity across the 2 .. .
channel. Par¢a) concerns Rg=180. For such a low value of [
the flow control parameter, the agreement that can be ob- 109 10" 102
tained for a boundary condition shift of five wall units is still +
good(for both conditions | and Il the relative local error with -/
respect to the direct numerical computation is lower than
5%, a value which goes down to 2% for a shift of two wall
units). If the control parameter is raised to Ré&90, the 20 [
foreseen systematic error shows. In Figo)3the mean ve-
locity distribution starts ay*=2 with a good estimate of the
local speed for both conditions | and II, but with a lower 16 |
slope, which, however, the noncommutation procedure is
able to compensate in such a way that, beyghd 40, the
slope is very close to that of the direct simulation data. A L o12f
local inaccuracy of 5% is eventually obtained in the central o
part of the flow. An integral accuracy of 8.7%, measured by 10 [
the normL,, is obtained in the first 109*. However, for gt
example, using condition Il, this uncertainty falls to 1.9% if
the SGS model is roughly optimized using the Van Driest 6

16 I

127

gl

damping function. 4t i
Figures 4 and 5 explain the behavior of the Reynolds

stress(uv) for the two values of the control parameter that 2 . T

were considered here. If the systematic error of the model 0

(SGSmMSE, see the shaded area in the figuseegxcluded, 10° 10! 102 108

the present near-wall treatment shows a very good agreemer y+

with the reference data. In particular, the Reynolds stress that

is obtained when using condition | is very close to the DNSFIG. 3. The mean velocity distribution across the channel(dy Re,
stress, while that obtained using condition Il is very close tg=290, the SGSMSE which induces the_ discrepancy in the derivative at the
the set of laser-Doppler anemometer results that were otfz e C0 SREETS: TouEiet, | o e NS are i fct
tained by Wei and Willmarth® It should be pointed out that parallel. This systematic error will not be present if improved SGS models,
the two models are different: model | is universal, i.e., it cansee Sec. |, are used.

be used in any situation, while model Il is more suitable to

feed the flow with a great deal of information concerning the

values of the variables and their derivatives at the walljn which we have used condition Il, that is, the mimimal
which can also include information on the time and spacgcrudes}y information level allowed by this model condition.
fluctuations, or possible evolutions along the wall, but thisBy putting the time averaged values of the first and segond
information should be available. Moreover, if this informa- derivatives of the mean velocity into bc (ile., for the wall

tion is available, condition Il, with only one equation and stress, the nondimensional constant pressure gradient, and
without overconstraining the field, allows the flow to yield for d,7|o, zero, we have in fact almost frozen the time fluc-
not only the value of the variable or of one of isderiva-  tuations aty, that is, where we apply the bc. This imposes a
tives, as is usually the case when the boundary is put on thecal underestimation of the time fluctuations (of) in the

wall itself, but all these values together. In the particularsurroundings ofy as compared to what happens when using
situation presented here, a first reason for the different bethe universal condition I. Another reason is that the local
havior between type | and Il boundary conditions is the wayunderestimation of the fluctuations at the field position where
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FIG. 4. Re=180, Reynolds stress distribution across the channel. Abs@litdu*v*)—(u*v*)pns (—) and relativeE, =[(U"v*)— (U v")png/ (U ) pnsl

X (----) error distributions on the Reynolds stress distributions for boundary conditignsahd Il (c—A, without the commutation correctioB, with the
commutation correction. Gray continuous curve: error recolegyA) —E,(B)]/E,(A). Shaded area: unreliable error distributions due to the systematic error
of the SGS model.

the bc is placed, in turn, induces a lowering of the intensityticed that both the cases of the simulations based on the use
of the subgrid terms in the filtered equations in the viscouf conditions | or Il yield results that are in between the DNS
sublayer, compared to what happens when using bc |, anand the experimental results. For example, the distance, mea-
this inevitably causes a discrepancy between solutions | ansured through the norrh, in the intervaly” € [5,100, be-
Il. tween the DNS and the experimental findings by Wei and
Parts(b) and (c) of Fig. 4 quantify the absolute and Willmarth'®is 18%, while the distance between the DNS and
relative errors on théuv) stress distribution compared to the the present large-scale simulatiécondition |) is only 4%.
DNS datd® with and without the noncommutation proce- The situation described in Fig. @e.=590, reference DNS
dure. It appears that, when the universal condition | is emdata base by Mosest al*) is similar. Condition Il performs
ployed, the treatment recovers the commutation error beyonbetter at Re=590, where the accuracy is 3.5%, while the
y*~20, where the recovery maintains values between 60%.3% is obtained at Re 180.
to 90%[Fig. 4(b)]. When condition ll(which is suitable for The resolvable turbulence intensities are plotted in Figs.
specifing/imposing the evolution of the stresses along thé(a) and Gb). Local discrepancies of the order of 10%
wall) is used, a high error recovetpearly 80% is reached (maximum) are observed with respect to the filtered DNS
in the central part of the channel. Recovery values of thalistributions, which is a good result and is somewhat better
order of 50% are obtained arounydt~ 20-30. It can be no- than the result offered by resolved simulations based on the
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FIG. 5. Re=590, Reynolds stress distribution across the channel. Abs@teu*v*)—(u*v*)pns (—) and relativeE, =[(U"v™) = (U v")pne/ (UTv ) pnsl

X (----) error distributions on the Reynolds stress distributions for boundary conditignsahd Il (c—A, without the commutation correctioB, with the
commutation correction. Gray continuous curve: error recolegyA) —E,(B)]/E,(A). Shaded area: unreliable error distributions due to the systematic error
of the SGS model.

dynamic Smagorinsky model. For example, in Ref. 19 localbnly the 5%, at Rg=180, and 15%, at Re 590, reduction of
discrepancies of 15% can be observed. Always with regard tthe value of the peak but also the 70% difference in the
this set of data, the present simulati@ondition ) shows an  position of the peak itself, which is located @t~ 20. The
improvement, for the longitudinal turbulence intensity, of theratio P/ should in fact correctly peak gt =12-13, which
accuracy with respect to the DNS data that decreases frois, however, inside the layer of the unreliable results due to
21.6% to 8%—the accuracy being based on thenorm  SGSmMSE. This explains the inaccuracy in the peak position
computed in the interval 2 y*<50. Instead, for the other of the present simulations.
turbulence intensity components, the accuracy is the same.

Figure 7 shows the ratio of tlhe.me.an turbulent klnetICIV. CONCLUDING REMARKS
energy production to the mean dissipation due to molecular
and eddy viscosity compared to the ratio relevant to the di- Wall conditions shifted from and laid parallel to the
rect numerical simulations at Rel80 and 590. In the physical boundary of the flow domain have been presented.
present large-eddy simulations, due to the problem ofn this work we propose to use them together with the non-
SGSmSHsee Sec. Y, the dissipation function and the SGS commutation explicit procedure to expound a new wall treat-
stress are overestimated close to the wall. This explains nohent for the resolved large-scale simulation of turbulent
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FIG. 7. Distribution of the mean energy production and dissipation ratio
across the channel.

expansion of the unfiltered wall quantities. In this way a
universal wall condition(Taylor’'s expansion, bc)lcan be
expressed at distances of about one viscous length from the
wall, together with another condition that exploits the knowl-
edge of the wall stress distribution and variatidhac Lau-
rins’s expansion, bc JI This exploitation is a tool which can

be useful to solve the inverse problem and whenever the wall
stress(as well as, possibly, the heat wall flugistribution

and evolution are priori known.

In general, despite the rather inappropriate SGS model
that was deliberately used to test the capability of this near-
wall treatment(see the analysis rationale in Sec. IV, the
model used is the Smagorinsky model with a constant coef-

‘ ‘ ficient, as far as the comparison of model performances in
0 20 40 60 80 100 LES is concerned; see, for instance, the case of the mixing
y* layer presented in Meneveau and Kﬁ)zthe agreement be-
tween the present large-scale simulations, the DNS data, and
FIG. 6. Resolvable turbul(ﬂe intensities, comparison with direct simulathe experimental observations is good, which confirms that
30”552'2 r:éiu;I_Ltjiilzn lljir;:e\Kv)nzfi|tv¢\a/r;d\ﬁgvl\>|;-(2i?keTli:ntSOVfiEe,\rIdeSﬁgﬁse coupling the explicit treatment of the noncommutation errors
R)(/a,:59s£), DNS“databasesvbl;/ Moset al, oﬁly unfilterse’d data availab)le. _tO one of the proposed two dl_fferent kinds of no-slip an_d
Symbols present LES, filled symbols bc I, and empty symbols b I. impermeability boundary conditions for the resolved vari-
ables is rewarding.

The noncommutation terms in the governing equations
near-wall flows. The treatment was conceived to enhancere important mainly in the near-wall part of the flow due to
regardless of the SGS model performance, the large-eddye filter gradient dependence. However, it has been con-
method applied to the resolved simulation of wall flows. Forfirmed that the noncommutation errors in the solution are
this reason, and also to test the capability of the treatment inlso transferred toward the central part of the flofhe
detail, the SGS model employed in the large-eddy scaleelative errors in the central flow region, where the filter
simulations was, deliberately, selected as it is the least agradient is zero, are in fact lower but of the same order of
propriate eddy viscosity model for the near-wall region of magnitude as the local maximum error of the field. It can be
the turbulent channel flow. noticed that the present wall treatment is able to substantially

Two different wall conditions were obtained by combin- reduce not only the noncommutation errors but also the sys-
ing approximate deconvolutions of the filtered velocities attematic error associated to the employment of the least ap-
the shifted boundary with a Taylor or a Mac Laurin seriespropriate SGS model. The accuracy given by the present
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