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Shearless turbulence mixing.
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Region 1:

• no mean shear⇒ no turbulence production

• the mixing layer is generated by the
turbulence inhomogeneity, i.e.:

� by the gradient of turbulent energy
and
� by the gradient of integral scale



Previous investigations:

Esperiments with grid turbulence:

– Gilbert B. J. Fluid Mech. 100, 349–365 (1980).

– Veeravalli S., Warhaft Z. J. Fluid Mech. 207,191–229 (1989).

Numerical simulations (DNS):

– Briggs D.A., Ferziger J.H., Koseff J.R., Monismith S.G. J. Fluid Mech. 310, 215–

241 (1996).

– Knaepen B., Debliquy O., Carati D. J. Fluid Mech. 414, 153–172 (2004).

• in (passive) grid turbulence the higher energy is always associated to
larger integral scales, so the two parameters are not independent ⇒
guess about no intermittency in the absence of scale gradient and
turbulence production.

• numerical simulations reproduced the 3,3:1 laboratory experiment by
Veeravalli and Warhaft.



New decay properties

• the two parameters, the turbulent kinetic energy ratio E and the
integral scale ratio L, has been independently varied

• the persistency of intermittency in the limit of no scale gradient (L →
1) and absence of turbulence production has been investigated.

In particular we present:

•Part 1: results from numerical simulations (DNS and LES, 2005 JFM,
to appear)

•Part 2: intermediate asymptotics analysis (L → 1, 2005 IFIP TC7
and DLES6; L �= 1, in preparation)



Part 1: numerical experiments

Numerical simulations (DNS and LES) have been carried out with

• Fixed energy ratio E ∼ 6.7 and varying scale ratio 0.38 ≤ L ≤ 2.7

•No scale gradient (L = 1) and variable energy ratio 1 ≤ E ≤ 58.3

•Reynolds number: Reλ ≈ 45 (DNS, LES) and Reλ ≈ 450 (LES only,
IAM model, Iovieno & Tordella Phys.Fluids 2002)

•Numerical method: Fourier-Galerkin pseudospectral on a 2π3 cu-
be and a 2π × 2π × 4π parallelepiped (Iovieno-Cavazzoni-Tordella
Comp.Phys.Comm. 2001)
Resolution: DNS = 1282 × 256, LES = 322 × 64

• Initial conditions: two turbulent fields coming from simulations of
decaying homogeneous isotropic turbulence.



Decay exponents

•The two homogeneous fields decay algebrically in time, according to
theoretical (and experimental) results (see Karman and Howarth 1938,
Sedov 1944, Batchelor 1953, Speziale 1995)

E = A(t + t0)
−n

•Decay rates n1, n2 are higher than the limit, n = 1, for high Reynolds
number, but still close to this value (n1 ≈ n2 ≈ 1.2 − 1.4), so that
the energy and scale ratios remain nearly constant (up to 10%) during
the decay
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•All mixings have an intermediate self-similar stage of decay



Energy similarity profiles
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, where Rii is the

longitudinal velocity correlation (see e.g. Batchelor, 1953).



Higher order moments: skewness and kurtosis profiles

S =
u3

u2
3
2

K =
u4

u22 ⇒ S ≈ 0, K ≈ 3 in homogeneous isotropic turb.

Case A: E = 6.7, L = 1, the two fields have the same integral scale.
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Case C: E = 6.5, L = 1.5 : the gradients of energy and scales have
the same sign: larger scale turbulence has more energy
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Penetration - position of the maximum of skewness/kurtosis
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Penetration - position of maximum of skewness/kurtosis, E = 6.7
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Part 2: similarity analysis

Properties of the numerical solutions:

•A self-similar decay is always reached

• It is characterized by a strong intermittent penetration, which depends
on the two mixing parameters:

– the turbulent energy gradient

– the integral scale gradient

This behaviour must be contained in the turbulent motion equations:

• the two-point correlation equation which allows to consider both the
macroscale and energy gradient parameters
(Bij(x, r, t) = ui(x, t)uj(x + r, t));

• the one-point correlation equation, the limit r → 0, which allows to
consider the effect of the energy gradient only.



Single-point second order correlation equations

To carry out the similarity analysis for L = 1, we consider the second
order moment equations for single-point velocity correlations

∂tu2 + ∂xu3 = −2ρ−1∂xpu + 2ρ−1p∂xu− 2εu + ν∂2
xu

2 (1)

∂tv
2
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2
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∂tv
2
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2u = 2ρ−1p∂y2v2 − 2εv2 + ν∂2
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2
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where:
u is the velocity fluctuation in the inhomogeneous direction x,
v1, v2 are the velocity fluctuations in the plane (y1, y2) normal to x,
ε is the dissipation.



boundary conditions:

outside the mixing, turbulence is homogeneous and isotropic:
• For x→ −∞ (high-energy turbulence):

u2 = v2
1 = v2

2 =
2

3
E1(t)

pu = u3 = v2
1u = v2

2u = 0

• For x→ +∞ (low-energy turbulence):

u2 = v2
1 = v2

2 =
2

3
E2(t)

pu = u3 = v2
1u = v2

2u = 0

initial conditions:

u2 = v2
1 = v2

2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
3E1(0) if x < 0
2
3E2(0) if x ≥ 0

pu = 0



Hypothesis and semplifications

•The two homogenous turbulences decay in the same way, thus

E1(t) = A1(t + t0)
−n1, E2(t) = A2(t + t0)

−n2

the exponents n1, n2 are close each other (numerical experiments,
Tordella & Iovieno, 2005). Here, we suppose n1 = n2 = n = 1, a
value which corresponds to Rλ� 1 (Batchelor & Townsend, 1948).

• In the absence of energy production, the pressure-velocity correlation
has been shown to be approximately proportional to the convective
fluctuation transport (Yoshizawa, 1982, 2002)

−ρ−1pu = a
u3 + 2v2

1u

2
, a ≈ 0.10,

• Single-point second order moments are almost isotropic through the
mixing:

u2 
 v2
i



These semplifications imply that the pressure-velocity correlations can
be represented as:

−ρ−1pu = αu3, α =
3a

1 + 2a
≈ 0.25.

Thus the problem is reduced to

∂tu2 + (1− 2α)∂xu3 = −2εu + ν∂2
xu

2

with the boundary and initial conditions previously described.



Similarity hypothesis

The moment distributions are determined by

• the coordinates x, t

• the energies E1(t), E2(t)

• the scales �1(t), �2(t).

Thus, through dimensional analysis,

u2 = E1ϕuu(η,R�1
, ϑ1, E ,L)
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3
2
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3
2
1�−1

1 ϕεu(η,R�1
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where:

η = x/Δ(t), Δ(t) is the mixing layer thickness, R�1
= E

1
2
1 (t)�1(t)/ν,

ϑ1 = tE
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2
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The high Reynolds number algebraic decay (n = 1) implies:

E = const =
E1(0)

E2(0)

L = const =
�1(0)

�2(0)

ϑ1 = const =
n

f (Rλ1
)

R�1
∝ t1−n = const

where f (Rλ) =
ε�

E3/2
is constant during decay (see Batchelor (1953),

Speziale (1995), Sreenivasan (1998)).

⇒ η is the only similarity variable, η = η(x, t).



⇒ similarity conditions:

By introducing the similarity relations in the equation and by imposing
that all the coefficients must be independent from x, t, it is obtained

Δ(t) ∝ �1(t)

⇒ similarity equation:
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⇒ the third-order moment, ϕuuu, can be represented as a function of
the second order moment, which yields
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With regard to the second-order moments, the numerical experiments
suggest the fit (see also Veeravalli & Wahrhaft, JFM 1989)
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This allows to compute the velocity skewness by analitical integration
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Normalized energy and skewness distributions; E = 6.7 and L = 1.
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Position of the skewness maximum
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Conclusions (. . . up to now)

The intermediate asymptotics of the turbulence diffusion in the absence
of production of turbulent kinetic energy is considered.

•An intermediate similarity stage of decay always exists.

•When the energy ratio E is far from unity, the mixing is very intermittent .

•when L = 1, the intermittency increases with the energy ratio E
with a scaling exponent that is almost equal to 0.29 .

• intermittency smoothly varies when passing through L = 1:
it increases when L > 1 (concordant gradient of energy and scale),
it is reduced when L < 1 (opposite gradient of energy and scale)

• the self-similar decay of the shearless mixing is consistent with
the similarity solution of the single-point correlation equation.



. . . work in progress

•Consider both scale and energy gradient pareameters by means of the
two-point correlation equation

• Small scales. . .→ velocity derivative skewness and structure functions

•Reynolds number effect

•Computational accuracy: influence of the domain dimensions

(. . . the end)



Appendix: Numerical discretization. . .

Incompressible Navier-Stokes equations:

∂tui + ∂j(uiuj) = −∂ip +
1

Re
∇ui

−∇2p = ∂i∂j(uiuj)

Cubic domain (2π × 2π × 2π) with periodic boundary conditions:

ui(x + 2πe(j)) = ui(x) ∀i, j
Fourier-Galerkin approximation (see Canuto et al., 1988):

uN
i (x, t) =

N/2∑
k1,k2,k3=−N/2

ûN
i,k(t)e

ik·x, pN(x, t) =
N/2∑

k1,k2,k3=−N/2
p̂N
k (t)eik·x

Semi-discrete equations:

∂tû
N
i = −ikj

̂
(uiuj)− ikip̂

N − k2

Re
ûN

i

−k2p̂N = −kikj
̂

(uiuj), k2 =| k |2
Convective terms

̂
(uiuj) are evaluated with pseudo-spectral method.

Time integration with low storage Runge-Kutta 4 (Jameson at al. AIAA J. 1981)



. . . Parallel code

The code uses real-to-real FFT and stores Fourier coefficients in hermitian form (see
Iovieno-Cavazzoni-Tordella,Comp.Phys.Comm. 2001)
Most operations are local in the wavenumber space with the exception of the pseudo-
spectral computation of convective terms

̂
(uiuj):

Basic method (aliasing error)

• inverse FFT of ûN
i and ûN

j

• product in the physical space

• FFT of the product

Scheme for parallel FFT/inverse FFT
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⇒ To remove the aliasing error data must be expansed from N to M = 3
2
N points in

alla directions (see Canuto et al., 1988).



. . . dealiased pseudo-spectral computation of products
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and expand 3
transpose
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(Scheme for parallel inverse FFT)



Data transposition (inverse FFT)

•Preliminary cicle: each processor transposes and collocates the “diagonal block”:

g(j1, j2 + I(Iirank
), j3)← f(j1, j3 + irankMloc, j2)

where

I(i) =

⎧⎪⎪⎨
⎪⎪⎩

Nproci ifi < Nproc

I(i) = M −Nproci otherwise

3

2

3

2

P3

P2

P1

P0

P3

P2

P1

P0

N , M = 3N/2 are the number of points,
Nproc is the number of processors Nloc = N/Nproc, Mloc = M/Nproc



•Main loop:

for j from 0 to Nproc − 1,
– each processor defines the destination and source for communication:

idest = irank + j, isource = irank − j
– each processor creates and transposes the block to be sent:

BT (j1, j2, j3)← f(j1, j3 + idestNloc, j2)
– Communication occurs by means of a call to MPI send recv replace

– Each processor allocates the received block in the new position:
g(j1, j2 + I(Isource), j3)← BT (j1, j2, j3).

end of the loop.

... example with 4 processors in next slide →



j = 1

j = 2

j = 3

Note: Red blocks are transferred during

each step of the loop
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