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Shearless turbulence mixing.
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Previous investigations:

Esperiments with grid turbulence:

~ Gilbert B. J. Fluid Mech. 100, 349365 (1980).
— Veeravalli S., Warhaft 7. J. Fluid Mech. 207,191-229 (1989).

Numerical simulations (DNS):
— Briggs D.A., Ferziger J.H., Koseff J.R., Monismith S.G. J. Fluid Mech. 310, 215-

241 (1996).
— Knaepen B., Debliquy O., Carati D. J. Fluid Mech. 414, 153-172 (2004).

e in (passive) grid turbulence the higher energy is always associated to
larger integral scales, so the two parameters are not independent =
quess about no intermittency in the absence of scale gradient and
turbulence production.

e numerical simulations reproduced the 3,3:1 laboratory experiment by
Veeravalli and Warhaft.



New decay properties

e the two parameters, the turbulent kinetic energy ratio £ and the
integral scale ratio L, has been independently varied

e the persistency of intermittency in the limit of no scale gradient (£ —
1) and absence of turbulence production has been investigated.

In particular we present:

e Part 1:results from numerical simulations (DNS and LES, 2005 JFM,
to appear)

e Part 2: intermediate asymptotics analysis (£ — 1, 2005 [FIP TC7
and DLES6; £ # 1, in preparation)




Part 1: numerical experiments

Numerical simulations (DNS and LES) have been carried out with

e Fixed energy ratio & ~ 6.7 and varying scale ratio 0.38 < £ < 2.7
e No scale gradient (£ = 1) and variable energy ratio 1 < & < 58.3

e Reynolds number: Rey ~ 45 (DNS, LES) and Re) ~ 450 (LES only,
[AM model, Tovieno & Tordella Phys. Fluids 2002)

e Numerical method: Fourier-Galerkin pseudospectral on a 273 cu-

be and a 2w x 27w X 4m parallelepiped (Iovieno-Cavazzoni-Tordella
Comp.Phys. Comm. 2001)

Resolution: DNS = 1282 x 256, LES = 322 x 64

e [nitial conditions: two turbulent fields coming from simulations of
decaying homogeneous isotropic turbulence.



Decay exponents

e The two homogeneous fields decay algebrically in time, according to
theoretical (and experimental) results (see Karman and Howarth 1938,
Sedov 1944, Batchelor 1953, Speziale 1995)

E=A{t+1t) "

e Decay rates ny, no are higher than the limit, n = 1, for high Reynolds
number, but still close to this value (n] &~ ng &~ 1.2 — 1.4), so that
the energy and scale ratios remain nearly constant (up to 10%) during
the decay
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e All mixings have an intermediate self-similar stage of decay



Energy similarity profiles
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Higher order moments: skewness and kurtosis profiles
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Case C: &£ =606.5, L = 1.5: the gradients of energy and scales

the same sign: larger scale turbulence has more energy
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Penetration - position of the maximum of skewness /kurtosis
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Penetration - position of maximum of skewness/kurtosis, £ = 6.7
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Part 2: similarity analysis

Properties of the numerical solutions:
o A self-similar decay is always reached

e [t is characterized by a strong intermittent penetration, which depends
on the two mixing parameters:

—the turbulent energy gradient
—the integral scale gradient

This behaviour must be contained in the turbulent motion equations:

e the two-point correlation equation which allows to consider both the
macroscale and energy gradient parameters
(Bij(x,1,t) = ui(x, t)uj(x +r,1));

e the one-point correlation equation, the limit r — 0, which allows to
consider the effect of the energy gradient only.




Single-point second order correlation equations

To carry out the similarity analysis for £ = 1, we consider the second
order moment equations for single-point velocity correlations

Opu? + Opus = —2p_18g;m + Qp_lp(?g;u — 2eq + V@%W

Opvf + Opviu = 2p POy, U] — 2, + vOovt
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Ov3 + Opviu = 2,0_1p8y2v2 — ey + VO3
where:
u 1s the velocity fluctuation in the inhomogeneous direction .

vy, v9 are the velocity fluctuations in the plane (y1, 9) normal to x,
e 1s the dissipation.



boundary conditions:

outside the mixing, turbulence is homogeneous and isotropic:
e For z — —oo (high-energy turbulence):

2
%:U%ZSEl(t)
pu = u? = vfu = viu = 0

u? =

e For z — +o00 (low-energy turbulence):

?:U%:U%: E

Qo DO
o)

()

pu:ﬁzv%u:vgu:()

initial conditions:

9 :
sE1(0) it 2 <0

— pu = 0
2Ey0) if x>0



Hypothesis and semplifications

e The two homogenous turbulences decay in the same way, thus
Ei(t) = Aq(t +tg) ", Exo(t) = Ao(t +1tp) ™

the exponents nj, ng are close each other (numerical experiments,
Tordella & lovieno, 2005). Here, we suppose ny = ng =n =1, a
value which corresponds to Ry > 1 (Batchelor & Townsend, 1948).

e In the absence of energy production, the pressure-velocity correlation

has been shown to be approximately proportional to the convective
fluctuation transport (Yoshizawa, 1982, 2002)

1 $+2v%7u
—p pu=4da 5 ;

e Single-point second order moments are almost isotropic through the
mixing:

a ~ 0.10,

212~ 92
u _Ui



These semplifications imply that the pressure-velocity correlations can
be represented as:

Thus the problem is reduced to
Au? + (1 — 20)0,u3 = —2ey, + vO2u?

with the boundary and initial conditions previously described.



Similarity hypothesis

The moment distributions are determined by

e the coordinates x, t
e the energies F(t), Eo(t)
e the scales £(t), lo(t).

Thus, through dimensional analysis,
u? = E1puu(n, Ry, 91,€, L)
W = Btouuln, ey, 01,€, 0
cu = BYT oz, (0. Byyo91..),

where: |
n = x/A(t), A(t)is the mixing layer thickness, Ry, = B (t)0(t) /v,

9y = tER)/01(8), € = Ex()/Bolt), L = 01(8)/0o()



The high Reynolds number algebraic decay (n = 1) implies:

E1(0)
& = const =
E5(0)
41(0)
L = const = —=
£(0)
Y1 = const =
f(Ry)
Ry, o 17" = const
el .
where f(R)) = 732 18 constant during decay (see Batchelor (1953),

Speziale (1995), Sreenivasan (1998)).

= 1 is the only similarity variable, n = n(x,t).



= similarity conditions:

By introducing the similarity relations in the equation and by imposing
that all the coeflicients must be independent from x, ¢, it is obtained

A(t) oc £1(1)

= similarity equation:
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= the third-order moment, @4, can be represented as a function of
the second order moment, which yields

L]/
= [

3 v 0
Puu dn + Puu
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With regard to the second-order moments, the numerical experiments
suggest the fit (see also Veeravalli & Wahrhaft, JEM 1989)

3 1+&t 1-¢g7t
Puu = 9 9

2 erf(ﬁ)?

This allows to compute the velocity skewness by analitical integration

1
1-¢& enz{ f (1_ 4y
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Normalized energy and skewness distributions; £ = 6.7 and £ = 1.
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Conclusions (...up to now)

The intermediate asymptotics of the turbulence diffusion in the absence
of production of turbulent kinetic energy is considered.

e An intermediate similarity stage of decay always exists.

e When the energy ratio £ is far from unity, [HHCHIINGUSNVOLY UG NI0CIT

e when £ = 1, the intermittency increases with the energy ratio £
with a scaling exponent that is almost equal to 0.29.

e intermittency smoothly varies when passing through £ = 1:
it increases when £ > 1 (concordant gradient of energy and scale),
it is reduced when £ < 1 (opposite gradient of energy and scale)




... work in progress

e Consider both scale and energy gradient pareameters by means of the
two-point correlation equation

e Small scales. . . — velocity derivative skewness and structure tunctions
e Reynolds number effect

e Computational accuracy: influence of the domain dimensions

(...the end)



Appendix: Numerical discretization. ..

Incompressible Navier-Stokes equations:

1
Oyu; + 8J(ulu]) = —0,p+ @VUZ
—V2p = Glﬁj(uzu])
Cubic domain (27 x 2w x 27) with periodic boundary conditions:
wi(x + 2meV)) = uy(x) Vi, j

Fourier-Galerkin approximation (see Canuto et al., 1988):

N/2 . N/2 .
wp ()= X A (), ptx )= 2 e (t)e
k1,ko,k3=—N/2 k1,ko,ka=—N/2
Semi-discrete equations:
_ 2
8{&5\[ = —ikj(uiuj) — lk@ﬁN — —"LAL;N

Re
— kY = —kikj(uug), kK =k |?

Convective terms (uZAu]) are evaluated with pseudo-spectral method.
Time integration with low storage Runge-Kutta 4 (Jameson at al. ATAA J. 1981)



... Parallel code

The code uses real-to-real FF'T and stores Fourier coefficients in hermitian form (see
lovieno-Cavazzoni-Tordella, Comp. Phys. Comm. 2001)

Most operations are local in the wavenumber space with the exception of the pseudo-
spectral computation of convective terms (wut;):

Basic method (aliasing error)
e inverse FFT of 4 and f&j\[
e product in the physical space
e F'E'T of the product
Scheme for parallel FET /inverse FFT

3 3 3

perform 2D
inverse FFT

_>

transpose (2,3)

—- 3

P3

P2

2

P1 2 P1

PO

1 1 1

= To remove the aliasing error data must be expansed from N to M = %N points in
alla directions (see Canuto et al., 1988).



.. . dealiased pseudo-spectral computation of products

expand 1 and 2

_>

perform 2D
inverse FFT

transpose
and expand 3

P3
P2 2
P1

PO

1

(Scheme for parallel inverse FFT)



Data transposition (inverse FFT)

e Preliminary cicle: each processor transposes and collocates the “diagonal block™:

9, g2+ 1(L;,, ), 93) < f(J1, 93 + trank Mioe, J2)
where

Npmci ZfZ < Nproc
I(i) = M — Npyoct otherwise

I(i) =

Y

2 2

N, M = 3N/2 are the number of points,
Nproe 18 the number of processors Nijoe = N/Nproe, Mioe = M/ Nproc



e Main loop:

for j from 0 to Nppoe — 1,
— each processor defines the destination and source for communication:
vdest = irank + 7, 1source = irank — j
— each processor creates and transposes the block to be sent:
B (j1, 72, 33) < f(j1, J3 + taestNioes J2)
— Communication occurs by means of a call to MPI _send recv replace
— Each processor allocates the received block in the new position:

g(jlan + I(Isource>aj3> N BT<j17j2aj3>°
end of the loop.

. example with 4 processors in next slide —



Note: Red blocks are transferred during
each step of the loop
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