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The angular momentum equation for a finite element of a fluid: A new
representation and application to turbulent modeling

M. lovieno and D. Tordella
Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, C.so Duca degli Abruzzi 24,
10129 Torino, Italy

(Received 7 February 2001; accepted 24 April 2002; published 20 Jung 2002

The equation for the intrinsic moment of momentum averaged over small volumes of linear
dimension é has been considered. A representation of it is given as an infinite sequence of
independent equations using a series expansion in ter#fs ¥he equations of different orders are
obtained through linear antisymmetric operators—with a structure that is similar to that of the
curl—acting on the momentum equation. The first-order term of the sequence is the Helmholtz
equation; the remaining terms can be considered as balances for a kind of higher-orders vorticity. It
has been shown that the coupling between the momentum and the angular momentum equation,
based on a supposed antisymmetrical part of the stress tensor—which has sometimes been assumed
by authors who deal with turbulent flow of a homogeneous fluid—is devoid of physical rationale.

A different form of coupling is proposed that may be used to describe a turbulent flow of a
homogeneous medium, using a large eddy simulation technique. In the authors model the coupling
is given by a functional dependence of the turbulent eddy diffusivity over the angular momentum of
a finite volume of a fluid. ©2002 American Institute of Physic§DOI: 10.1063/1.1485765

I. INTRODUCTION scales of the turbulence. Even with fluids deprived of inter-
nal structures, asymmetry was associated to the turbulent
To deal with a nonhomogeneous fluid with internal stress in Mattiofi*°and in NicolaevskyX*?In Eringen® the
structures on which external forces and couples act, it isnicropolar theory was applied to turbulence.
necessary to introduce a balance of angular momentum, In Sec. Il an analysis was carried out on the structure of
whose presence affects the symmetry property of the stresse angular momentum budget over finite volumes of linear
tensori~In this case the moment of the momentum equatiordimensions. The analysis is relevant to all situations where
is no longer equivalent to the angular momentum budget anghe fluid may be considered locally homogeneous. Through a
a new variable, the intrinsic angular momentum per unit vol-power series development in the square of the linear dimen-
ume, must necessarily be introduced. sion of average we show that the balance for the intrinsic
The micropolar theof7 8 views the medium as a collec- momentum may be represented by an infinite succession of
tion of material systems, the microelements, containing moindependent equations obtained by applying linear antisym-
mentum, intrinsic angular momentum, and energy. The mimetric operators to the momentum balance. The first-order
croelements can contain internal structurgie liquid  term of the sequence is the vorticity equatiér® while the
crystals, blood cells,),. however, the fluid is viewed as higher-order relations are not reducible to it and may be
monophase. The motion of the microelement is fully de-viewed as high-order vorticity budgets.
scribed by the velocity of its centroid and by a second-order  Applications of theories relevant to structured flows to
tensor—called the microgyration tensor—which portrays theurbulence are discussed in Sec. Il A through an analysis of
internal deformation and rotation of the element. The centhe symmetry property of the Navier—Stokes equations. The
troid velocity and the microgyration tensor vary continously common aspects of these theories and their physical support
in the external scale of the field. In an incompressible flow,are discussed. In Sec. Il B, in the ambit of turbulence mod-
Eringen’s theory leads to a set of 12 differential equationsgeling, a different kind of coupling is suggested between the
from which the intrinsic moment of momentum can be re-momentum and angular momentum turbulent equations,
covered by taking the antisymmetrical part of the microgy-which does not rely on the supposed existence of the anti-
ration tensor. The equation of the intrinsic angular momensymmetric part of the stress tensor. A large eddy scale model
tum appears to be coupled to the momentum equatiothat is based on the proportionality of the turbulent diffusiv-
expressed in terms of the centroid velocity in such a way a#ty to the intrinsic moment of momentum is proposed here.
to establish a link between the intrinsic motion inside theThe principal features of this model are the correct scaling of
microelements and the mean velocity field. the eddy diffusivity vs, with respect to both the filtering
The equation of angular momentum balance has beelength § and the dissipation rate function, and the introduc-
applied a few times during the last century to discuss theion of a differential equation—the intrinsic angular momen-
behavior of turbulent flows. Since the earliest application intum equation—to follow the evolution afs. This equation
1933 by Mattioli, the equations of motion were often inte- introduction should be advantageous in the case of simula-
grated over finite volumes to show the evolution of the largetion of nonequilibrium turbulence fields, since it adds a de-
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model would be the turbulent motion of suspensions of masy n gy "y Sdy
sive particles on which external couples apply, such as, for

example, a dusty plasma flow. In such a case the model 1 J'
BN

gree of freedom to the model. A natural application for this 1 f
5

would no longer be differential since the coupling between
the momentum and the angular momentum equations is al-
ready present and associated to the physics of the probler@ue to the symmetry property @f;, the nonzero integrals in
The model validation is described in Sec. Il C. (4) are those for which, s, andr are all odd. Placing
=2n+1s=2m+1r=2/+1 we define the coefficients

J[’+l§FS)r§;Sd§> 5t+l. (4)

1
Il. ANGULAR MOMENTUM AND VORTICITY IN a”’m"=v—f Um0 an-mgy (5)
MONOPHASE FLOWS 1/h
. . ._which represent the moments of the average volume of unit
The relationship between angular momentum and vortici s pue to the symmetry of the average volume, these

ity and between their equations is considered here. It is USLFoefﬁCients do not depend on the permutatipng, andq
ally assumed that vorticity represents the angular velocity o In such a way the operatdd is expanded in é\serieé of
a small volume of fluid. The vorticity equation is obtained by power of 5%

considering the curl of the momentum equation. Working on

volume-averaged equations, at a first-order approximation of o §2nt2

the angular momentum expanded in the square of the linear M= 2 MA(M, (6)

dimension of averagé, Nigmatulin and Nikolaevsky: for -0 '

an incompressible flow, and Chatwihfor a barotropic flow, where

showed the proportionality of vorticity to the angular mo- 0om

mentum. o AD=s S (
Here we have expanded the intrinsic angular momentum ik ik &) &~

in the neighborhood of a pointby means of a power series

in 8. The expansion is carried out at the general ordeAs

a result, an infinite sequence of independent linear antisyml-he mean intrinsic angular momentum per unit massf

metr]c dlﬁerentlgl operators, the first of which is the curl, is each element is defined as

obtained. Applying the operators to the momentum balance,

2n+1\/(2m+1
2m+1/\2/+1

Xan,m,/aJZ/+1[7F2;(m7/)(9(21(n7m) )

a correspondent infinite sequence of independent equations is {p)h=M/(pu). (7)
also obtained, where the first-order term is the Helmholtz - .
equation. _ From (6), and similar expansions of the averaged den-
In the neighborhood of a poin, sity, .9.,
52
Iy={x+ e R%| 7 <4}, (py t=pt l—aO’O'OVZp?-FO(ﬁ‘l)),

the spatial average operator);, truncated expansions for the intrinsic angular momentum can

1 be obtained. For instance, the expansion of the fourth order
<(P>5(X!t): V_f (P(X+ ﬂut)dﬂy (1) IS

S§JIs
V2p

_ 1,0,0,0 d9(pUy) +1
p

1
has been introduced, whe#s the linear dimension of 5, i=a 8ijkT52 ;( — E(aO,O,O)Zsijkaj(puk)

which is the volume of ;. To simplify the notation, suffix¥
will be usually omitted in the following. The intrinsic mo- 1 3410072
ment operatoM acting on a vector field is defined as + i[ a gijkdj(pUk)
(Mf); =g (X Fry = (6 {(Fi)). (2)
i ijk < j k> < J>< k> +(al,l,l_3al,0,0)8ijk(91_3(puk)] 54_’_0(56). (8)

Expandingf in the neighborhood o%, we obtain
The operatoM applied to the momentum equation,

© t S
1/t\[s
(Mf)i=gij > >, —( )( ) f (X, 1) =d(puy) + 3, (pugu,) — d, 0y, — pb=0,
{=0s=0r=o t! \S/\r

where o is the stress tensor ardis an external force field,
f nr+lnsr77tsdn) &) yields the budget foh in terms of a series expansion #.
75 P ’ Since this equation is an identity & the coefficient of each
52("*1) must vanish independently; that i&(Mf=0, Vn
wherej, p, andq are clockwise permutations of 1, 2, and 3. ¢ N, which reduces to

The transformationp= 6¢ shows the dependence on the — o
powers of§, ei 9 F(x,t)=0, VneN, 1i,j,k=123,

1
I 2S—rI t—s
Xé’jﬁp é’q fk<v—(S

Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Phys. Fluids, Vol. 14, No. 8, August 2002 Angular momentum equation for a fluid element 2675

as can be shown by induction. Free of any approximation,
the angular momentum budget leads to a sequence of differ- (dif)(X)= jﬂsga(y)ﬁif(X—y)dy
ential equations that cannot be reduced to each other, the ‘
leading order of which is the vorticity equation. Thliscan-
not be described in terms of only vorticity. Only whené

—0, h does contain the same amount of informationaas . o ) o
but in this casa goes to zero ag. Relation (10) implies that this spatial filtering is unable to

The higher-order equations of the sequence may be ireréak th_e symmetry property of flow tensors,_independently
terpreted as balances for high-order vorticities. The result i§' the kind of regime of motion, whether laminar or turbu-
quite general because it is not restricted by the particulafent- To verify this inference, it is sufficient to apply the
nature of the constitutive equation, as long as the latter délltering to the Navier—Stokes equations that, in case of in-
scribes a fluid—even though with internal structures—as &ompressible flow, yields
fluid with bulk properties. The higher-order terms of this _
sequence may become useful in turbulence applications, PD(ui) =L = (P diy) + ul(du) + aiduy))

=ﬁﬁsﬁi[ga(y)f(x—y)]dy:5i<f>- (10

where auxiliary-independent equations are required for the +p((up{uj) —(uu)) 1. (11
correlation variables that are introduced by the filtering pro-
cess. The theories by Mattioli, Ferrari, and Nikolaevsky adopt

the following structure for incompressible turbulence equa-

IIl. ANGULAR MOMENTUM AND TURBULENCE tions of a homogeneous fluid:

A. Applications to turbulence of structured fluid pD(u;) = d;0; + 9 Tﬁ +7, Tis] , (12)
theories
=g T Ci: Qi
In Eringen'® the microfluid theory, that was conceived D= &ije 7t 9,Cij + dsiy (13

for structured fluids, was applied to a turbulent flow of a,\nere superscripts ands stand for antisymmetric and sym-
nonstructured fluid. ﬁ)nalogous anfoaCheS were proposed ietric and all the tensors are volume-averaged quantities:
the past by Mattioft® and Ferrari® where an intrinsic an- oi; and 7; are the molecular and turbulent stress tensors,
gular momentum was mtroducelgl to represent the turbulenfhjje ;. c;; are the molecular and turbulent flow tensors of
transport, and by NikolaevsKy;" who approximated the anqular momentum, respectively. There is no doubt that the
volume average of the spatial derivatives in terms of an INaveraged velocity indicates the same variable in Ej$)
cremental ratio of surface integrals thus introducing asymsq (12) and thus that the equations cannot both be true.
metry into the turbulent stress. o _ In Mattioli’s theory the antisymmetrical part of the tur-
The crucial point of these theories is the coupling be-yjent stress is assumed and interpreted as the momentum
tween the momentum and the moment of momentum equazansport due to the vortical structures of the small scales that
tions. In all these theories the distribution of the mean veyye fijtered from the equation. A model is therefore required
IOC|t|_es depends on the motion of internal rotation, which iS¢y, this term. He also assumed, though not quite legitimately,
considered as the structural property of the elemental celigjnce he dedicated an evolutive equation to it, that the intrin-
the so-called microelements. The mathematical coupling be&jc moment is proportional to the vorticity. The angular mo-
tween the two kinematical aspects is due to the presence ghentym budget thus becomes an equation that operates on
the antisymmetrical part of the stress tensor in both momenye yorticity. This budget has, however, a different structure
tum and angular momentum equations. o _ from the original Helmholtz equation because of the pres-
This aspect is explicitly declared in Mattioli and it has gnce of the ternz; 75 . In this manner one dependent vari-
been renewed by Ferrari and Nicolaevsky, but is also a neggpe is dropped. The balance is then used to model the tur-
essary element in the model by Eringen. All these theoriegjent transport coefficient. Contrary, to what has been done

seem capable of reproducing experimental results concermning, the momentum. the inertial tensof, is assumed sym-
turbulent sheared flows. In spite of this, their common andy,gtric. ’ !

decisive component—the coupling between the momentum Nikolaevskij't while computing(9) over cubes, intro-
and angular momentum equations through an antisymmetriy,ces an approximation of the second ordes that induces
call part of the stress tensor—is an arbitrgry choice, Whosgq |ost of property(10) and thus of the property of symme-
validity in the case of a homogenous fluid can be provedyy, of the averaged equation, inside which he obtains the
false. . ) divergence of asymmetrical tensors. He, in fact, uses the
__The volume average for a functidn already introduced  Gayss theorem to transform the integral of the divergence
in Sec. Il, may be written as into a surface integral. He then he approximates derivatives

with the incremental ratios:
(Hx= f‘ﬁggg(x—y)f(y)dw 296N T(x=y)dy, (9) f
d

1%
wheref andgse L', together with their derivatives. Func- t?_X|> = a_m[f](i)“Lo(‘sz)’
tion g4 is the weight function that shapes the space portion
where the average is taken. Under these assumption, the firshere one should not sum over the index in parentheses and
spatial derivative and the volume average commute: [f]) is defined by
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NN wherer;; = (u;){u;)—(u;u;) is the turbulent momentum flow

[fli=(26) Zf,gf,g f(x+ 7y + ne&)dm;day . per unit mass. The intrinsic angular momentum equation is

obtained by applying the operatbt [relation(2) in Sec. I]]
Nikolaevskij neglects the tern@(5%). In so doing, he loses to the incompressible Navier—Stokes equation. The addition
the symmetry of the tensors involved in the equations, toof the terme; [ ({(X;ux) — (X;){ux)){u;)]—the convection of
gether with the commutability. the intrinsic angular momentum per unit mass by means of

In the application of the microfluid theory to turbulence, the averaged velocity field—to each side of the resulting
by Eringen®® the turbulent flow is considered as the motion balance yields the following equation fdr., that is, the
of a simple microfluid, even though any physical internalintrinsic angular momentum per unit mass of the elenfgnt
structure that could cause asymmetry is missing. [see(7), Sec. II:

The motion of the micropolar element is described by 1
the mean velocity (x,t) and by the microgyration tensor Dihi=p"djsi +d;cij + Bi (19
va(x,t) (k,1=1,2,3). The latter arises from the motion and where
deformations of material points inside the volume of the mi-
croelement. The resulting system of equations—which are Cij = i (XU = (X {ui)){uj) — ((Xugu;)

not reducible to the filtered Navier—Stokes equations— —(xMuu), (16)
comprehends 12 scalar equations for the three components of .
the mean velocity and for the nine componentsvgf{x,t) sij = &ik({X0%) — (X){ o)), (17)

and contains 23 constant viscosity coefficients. The intrinsic
moment of the momentum equation, which can be obtained Bi=ei{xib = (x)(bi)), (18)

from the antisymmetrical part ofy(x,t), is coupled to the are, respectively, the inertigtontaining stretchingand in-
momentum equation through the antisymmetrical part of theeraction flow tensors of angular momentum a8ds the
stress tensor, as in Mattioli and Nikolaevsky. In his solutioncouple associated to the external field

for the two-dimensional{2-D) turbulent channel flow, Erin- The terms inside Eq$14) and(15) that need to be rep-
gen gives a solution of his system of equations where thgesented through a model are the turbulent momentum and
stress tensor is nonsymmetric. The constant coefficient&ingular momentum stresses. The functional relations on
which are only five thanks to the simple domain geometrywhich the model relies are all Galilean invariants and are
were adjusted according to the experimental observations bjsted below:

Laufer!’ However, it is easily seen that if the nonsymmetric

part of the stress tensor is placed equal to zero, the equations vs=ch, (19
result to be uncoupled and the mean motion would be inde-

pendent of the inteprnal motion of the microelements. 7= Ch(ai(u) + aiu;) = S U &), (20

={(u:\h: - h— 2 -
B. Angular momentum large eddy model for turbulent ¢ij ={ui)h;+ch(d;hi+dih; = 5 dkhi i), (2D

flows wherec is a subgrid constant.

In this paragraph we would like to propose a different ~ The first term on the right-hand side (1) represents
kind of Coup”ng of the momentum and angu|ar momentumthe role played by the StretChing, while the other simulates
equationS, which does not require that a nonsymmetry part d‘he momentum transfer due to the turbulent convection. The
the stress tensor exists. In the framework of the large eddpresent day reference large eddy simulation method is based
scale simulation, a new differential model is proposed for the®n the adoption of Smagorinskyor the vorticity'* models,
turbulent stresses that is based on a Boussinesq transpdfhich assume a local invariance of the turbulent motion.
coefficient that is proportional to the mean intrinsic momentThus, in the immediate vicinity of a point, in time and space,
modulush, a flow integral quantity that takes into account @ dynamical similarity is assumed throughout the field. The
Ve|0city derivatives of any odd ordésee Sec. I, EqS(G) nondimensionalization of the field is based on the existence
and(7)], and that is supposed to include both the mechanim§f local turbulent scales that are small enough to adjust to the
of stretching and the process of autodiffusion. The coupling!owly changing environment in the external scale. With this
between the momentum and moment of momentum equdﬂOdG' one degree of freedom is introduced—the intrinsic
tions is thus given by the functional dependence of the eddngular momentum—which is portrayed by a relevant differ-
diffusivity over the intrinsic angular momentum of a finite €ntial equation, which is coupled but, however, independent

volume of a fluid. Let us consider the incompressible mo-Of the momentum equation. In this way we also hope to be
mentum equation, able to simulate a turbulent flow that is not in local equilib-

rium. This would, of course, depend on the propriety with
which the turbulent flow tensor of the intrinsic moment of
momentum is modeled. In relatidi2l) it was attempted to
insert the two major inertial phenomena that are present at
the level of the subgrid scales, the stretching and the trans-
port due to the turbulent convection.

In spite of the introduction of an additional differential
Dt<ui>=p71ﬁj<crij>+z9j 7ij+(by), (14)  equation, only one subgrid constanfappears in the model.

1
d(u)+3,(uu,)= ;f?/ffk,ﬂr by,
where oy, by, are the stress tensor and the external field

respectively. Applying the average operato)s, the mo-
mentum equation is written in the following form:
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Assuming that the largest resolvable wave number liebulence, (i) homogeneous turbulence undergoing a solid
within the inertial range, that the energy transferred from thébody rotation, andiii) shear-free nhonhomogeneous turbu-
resolved scales to the subgrid scales is equal to the energgnce are presented in this section.
dissipated by the latter and that the energy of the subgrid Before beginning the discussion on the numerical tests,
scales is that contained by their inertial pamee Lilly’® and  the criteria adopted to carry out the comparison of the angu-
Yoshizawd?) constanic may be estimated as 0.066ce Ap-  lar momentum model in the simplest way with different sub-
pendix A for detail$. grid models are described—the Smagorinsky and the mixed
Note that in local turbulence equilibrium conditions the models—being chosen as reference. Since an optimized
scaling of the turbulent viscosity, with respect to the dissipavalue for the angular momentum model subgrid constant is
tion function e and the filtering lengths, is the same as that not yet available at this stage, all the models are considered

of the intrinsic angular momentum, through their basic representation, which is founded on a
subgrid scale coefficient deduced from the knowledge of
h~ 6%3e13~ . (22) only the Kolmogorov constarLilly’s value? for the Sma-

gorinsky model; see Bardinet al. (1980%* and Meneveau
_ _ and Katz(199672° for the mixed model and Appendix A for
For the derivation of these scaling laws see Monin andpe present modglin this way it has been attempted to free
Yaglont? as regardé and Yoshizawd; Leslie and Quarif® e analysis from the peculiarities of the optimization pro-
as regards;. cess, which is always based on empirical information, which,
As a comment on the functional structure of the presenfs not known well and reproduced, could spoil the mutual
model, it is possible to draw a parallel between the latter an‘éomparisons of the models. Our analysis is mostly carried

the mixed subgrid modeBardinaet al, 1980:** out using the very basic values of the subgrid coefficients,
with a few supplements of information relevant to the Sma-
Tﬂ“xzCsim(«ui»«uj))—<<Ui><Uj>>)+2(Cs5)2|(D>|<Dij>, gorinsky and mixed models—utilized with optimized

coefficient€"—to be introduced into the comparative analy-
o . . sis, where opportune. On the other hand, to escape from the

wherecg;, andcs are the similarity and Smagorinsky subgrid ¢, mpjexity linked to the introduction of a further step in the
coefficients andD;; is the strain rate tensor. The analogy mqgeling process, we will also avoid comparing the models
consists in the fact that the first terms of the expansions if, he version that arises from the implementation of the
series ofs of the similarity subgrid tensor;™ and of the real dynamical procedur® which, nevertheless, could always be
subgrid tensgr £ij = (u;){u;) —(uju;)) are both proportional adopted to substantially improve the performance of all the
to dmUidmu;6°, while the first terms of the expansions in subgrid models(see the review by Meneveau and Katz,
series ofé of relation (21) and of the inertial tensor of the 2000.25 The angular momentum subgrid model could, of

flow of intrinsizc angular momentunil6) are both propor- o rse undergo the dynamical procedure as could any other
tional to u;w; 5~ (see Appendix B for details From this as- subgrid scale model.

pect we can infer that the present model could feature a  The homogeneous and isotropic field used as the initial
certain degree of backscatter: directlylyrand indirectly on  ¢qngition for all the large eddy simulations carried out to
v;s. Also of interest is the fact that—in the context of spectral, ojigate the present model is the 81BDNS database by
numerical simulations—the number of spectral products tha\tNray.” The initial distribution of the volume-averaged ve-
are necessary to implement the angular momentum model, i3ities and intrinsic moment of momenta are determined by
spite of the fact that it is a differential model, is exactly the averaging Wray's data over cubes with Sides correspond-
same as the number of spectral products that are necessaryiﬁ% to a LES spatial resolution of 84oints.

implement the mlxe_d model. . The energy temporal decays of homogeneous and isotro-
~ In'short, the main features of this model are the follow-ic rhylence, obtained from pseudospectral Navier—Stokes
ing: the capability of following the evolution df, and thus i i1ations over 6% points, implementing the angular mo-
of v, through a relevant differential equation and the Propethentum, the Smagorinsky and the mixed models, are shown
scaling with respect to the filtering length and the dissipatior), Fig. 1(a), together with the decay produced by the direct
rate. The differential nature would suggest an employment of, , merical simulation by WréJ over 513 points.

nonequilibrium turbulent flows for simulations. To make the LES temporal decays, obtained after filter-

A unique feature of the present model is its natural CONjng the DNS data, and the DNS decay comparable, the last
venience to simulate the dynamics of structured fluid in tur'decay is also shown after having applied at each instant a
bulent motion. In this case, the coupling between the Moy, hass filter on the spectral energy that consists of the
mentum and angular momentum equations already havingeqration of the three-dimensional energy spectrum—
been introduced by the physics of the system, the mode},| ded in the database at different eddy turnover times—
reduces from differential to algebraic. over the lowest 32 wave numbers, which is equivalent to a
spatial resolution of 64 points for the large eddy simula-
tions.

The angular momentum model behaves well, since it

The results obtained from tests concerning the statisticgberforms slightly better than the basic Smagorinsky and the
and spectral properties @f homogeneous and isotropic tur- mixed models. The performances become equivalent if the

C. Numerical validation of the angular momentum
large eddy model
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1.0 10° T
(a) 3 S =0.49 : initial condition of Cambon et al. [29]
N e M_'ﬁ_ ‘i.—.‘.—.'..—.'Q—.g.—.'.—.'.T.'.—.'.T.'h'.T.'h'
";_\ [ ™ \" S =0.45 : initial condition of
2 > present simulation
<
= .
- N
= = %
Ky A S
= 3: 10 N
-~ 3 N
;5 0.1 ] ®
512° DNS Wray [27] 2 ‘ e N
----- Filtered DNS NS — — EDQNM model, Cambon et al. [29]
| —=— Angular momentum model 0 © 256 DNS by Cambon et al. [29]
=% - Smagorinsky model, ¢,=0.1 © ®  Angular momentum model, 643 simulation
=—¥— Smagorinsky model, Lilly coefficient ¢ =0.18
—&— Mixed model,c=0.1
—0O— Mixed model, Lilly coefficient ¢~0.18 | 102 L
10! 10° 10!

[N

it I/Ro® = (o' / (2Q))™
FIG. 2. Homogeneous turbulence undergoing a solid body rotation with
angular speed). Velocity derivative skewness as a function of the inverse
of the micro-Rossby number. For the angular momentum model simulations,
the initial condition is taken from WragRef. 27 and the computed points—
black filled circles—are regularly spaced in time by 0.41 eddy turnover
times. The ensemble average that defines the velocity derivative ske8mness
= is approximated through the volume average over the whole computational
= domain.
o~ fi Simulations over 64 points, data at¢/1=3.7
&
= f — — 512> DNS by Wray [27], Re, =63
o~ 1 B . .
S w0 F oo Grid turbulence by Comte-Bellot — ro
' and Corrsin (28], Re, = 71 number Rq, w_/_ZQ, whe_rew is the root mean square
—=— Angular momentum model, Re, = 63 value of the vorticity and) is the background vorticity. The
,' - Aggulfg;noglueﬂﬂuz modil, kiﬂemua;ic viseosity two angular momentum large eddy simulations performed at
t el .
B —v— Smagorindky model, ¢ = 0.1, Re, = 69 initial micro-Rossby numbers greater than and nearly equal
[ J]] —o— Mixed model, ¢,=0.1, Re, = 68 to 1 show a very good agreement with two different sets of
L LM =5 Mixedmodel, Lilly coefficient ¢,=0.18, Re =54 data: the analytical representation of the evoluti@n
107 =S(Ro,,) deduced from the collapse over a unique curve of
0 8 1k6 2 32 many runs—uwith different initial Rg and a suddenly im-

posed rotation—of the basic EDQNkddy damped quasi-

normal Markovian model[see Camboret al. (1997),%° Fig.

3 and formula(3.5)] and two direct numerical computations

at initial micro-Rossby numbers close to the ones we tested.
The angular momentum large eddy simulations in this

case rely on a modified version of the averaged equations

(14) and(15) written in a rotating frame of referenda the

Smagorinsky and the mixed models use their optimized subapsence of external forces and with centrifugal terms associ-
grid constants. Figure(lt) shows the compensated energy ated to the pressure gradignt

spectra, at/7=3.7 and Rg~65, as established through the

FIG. 1. Homogeneous isotropic turbulenéa): turbulent kinetic energy de-
cay; (b) compensated three-dimensional energy specttérat3.7. For all
the simulations, the initial condition of the velocity field is taken from Wray
(Ref. 27.

experiments by Comte-Bellot and Corréfthe direct nu- D) +2e 4 Q AU} =p 100+ d;Tij , (23)
merical simulation by Wray and through large eddy simula-

tions based on the angular momentum model and the SM@y, h, +2¢, e mnm((X Un) — (X, ){Up))

gorinsky and mixed subgrid models. In these diagrams the

presence of a horizontal asymptote means the inertial range =p Y95+ a;ci; (24)

is reached. In this regard it is can be seen that the basic
(nonoptimized angular momentum model results to be where (), is the background constant angular rotation and
slightly more accurate than the other two models, even ifhe second term on the left-hand side ¢24) is
used with their optimized subgrid coefficients. approximated—through a development in series sobf

A result concerning the energy transfer that characterizedn—by
a decaying homogeneous turbulent field under solid body P~ 2 Qi () 8
rotation is presented for validation purposes in an anisotropy ' 3 i/kEkmmimO/A Hn/ O
situation. Figure 2 presents the dependence of the velocityhis expression can be simplified, using Ricci’'s formulas
derivative skewnes$, a quantity linked to the enstrophy (&;,k&xmn= Simdn— Sindim) @nd the incompressibility con-
production, on the inverse of the instantaneous micro-Rossbstraint, to
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B8 Grid turbulence, Veeravalli and Wahrhaft [32]

ri~-— %Q/&/<ui>52' --@ - DNS by Briggs et al. [31]
. . . —— Angular momentum model
This Coriolis angmar momentum and the CorreSpondlng Co- —— Angular momentum model, initial conditions from Orlandi [33]
riolis force, the second term on the left-hand sidé2$), are — — Smagorinsky model,c,=0.1

independent of the actual location of the axis of rotation and +— - Smagorinsky model, Lilly coefficient,=0.18

set the occurrence of a uniform background vorticity of value
2Q) on the flow, at a given initial time. During the next tem- 0.9
poral decay of an initially isotropic and homogeneous turbu- 43
lence, the background vorticity resists and prevents the twist:

ing and stretching mechanism caused by the turbulence s
itself, which leads to a decrease of the decay rate of the =_o06
turbulent kinetic energy. This phenomenology characterizes
the numerical simulations of Fig. 2, where a much faster =
decay(together with an initial conservation of the properties : 04
of isotropy and three-dimensionaff?9 of the velocity de- ~ 03
rivative skewness corresponds to simulations with a lower

o 0.2
initial Rossby number.

For the right-hand sides a23) and (24) reference is 0.1
made to Sec. Il B. 0.0

The last validation result we present corresponds to a
nonhomogeneous situation. The considered flow is the sheal
less mixing layer between two homogeneous and isotropic
turbulences that have different kinetic energies. Also in this
case, the angular momentum model performs very well, thus
confirming the good spectral and correlation properties dem-
onstrated in the preceeding two examples. In particular, it
can be noticed that its accuracy is higher than that of the” —
basic Smagorinsky modet{=0.18) and it is equivalent to |N; ’
that of the optimized Smagorinsky modeal & 0.10), even g
though it has not yet experienced an optimization process|”;°ﬁ°'2
and its subgrid coefficient is based on the one and only piece
of knowledge of the Kolmogorov constant. Figure 3 shows 0.0
the profiles of the turbulent kinetic energy and velocity
skewness of the mixing. The profile that gives a better indi-  -0-2
cation of the prediction capability of the mixing dynamics is
the skewness profile: the parameters that show a good inter  -04
mittency behavior are the value and the position of the maxi- -3 2 -1 0 1 2 3
mum of the skewness. The angular momentum simulations (-x,, M1
yield a velocity skewness profile that compares very wellFIG. 3. Shear-free decaying turbulent mixing«{=5.35): (a) profile of the
with the direct numerical simulation by Briggs al. (199@31 nondimensional turbult_ent kinetic engr_gﬁh) prof_ilg_of the v_glocity skew-

. . 32 ness. Whenever not differently specified, the initial condition for the large
and the eXpenr_nent by Ve_eravalll and-WarhéfQ89- and eddy simulations is taken from WrafRef. 27. The ensemble averages
that compares in the previously described way with regardgefining the velocity skewness are approximated through the computation of
to the Smagorinsky modé?_This set of simulations is based mean values over surfaces normal to the non homogeneity direction.
on initial homogeneous and isotropic turbulent fields by
Wray?’ and OrlandF®

All the presented large eddy simulations were obtainetholtz equation. The others may be viewed as kinds of high-
by means of a new dealiased pseudospectral Fouriergrder vorticity equations and could be used in turbulence
Garlekin Navier—Stokes cod@ee loviencet al*), imple-  mechanics as auxiliary equations to describe the evolution of
menting a fourth-order explicit Runge—Kutta scheme in thehe correlation variables obtained from the filtering of the
low storage version by Jamesenal. (1981).% turbulent equations. This representation could also be applied
to the motion of structured fluid, as long as they can be
considered as locally homogeneous.

The spatial filtering is not able to introduce asymmetries

By means of a series expansion in terms36f & being  into homogeneous flows, even though they are in turbulent
the linear dimension of the average—a new representation ehotion. The application of models suited to flows of a struc-
the averaged angular momentum balance has been detéwed fluid and characterized by the coupling of the momen-
mined in terms of an infinite sequence of independent differtum and angular momentum equations, through the presence
ential equations where linear antisymmetric operators act oof an antisymmetric part of the stress tensor, to turbulent
the momentum. The first term of the sequence is the Helmflows is not justified in our opinion.

0.8

0.6

IV. CONCLUSIONS
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A new differential large eddy scale model has been pro- c,
posed that is based on a different kind of coupling of the =~ €= <-~0.066,
momentum and angular momentum equations and that relies
on the assumption of a turbulent diffusivity that is propor-@ Value that has been successfully confirmed through the
tional to the intrinsic moment of momentum. This coupling Validation process described in Sec. Il[@lso see lovieno
does not spoil the symmetry property of the stress tensof2001%].
The model shows a proper scaling of the eddy diffusivity
with respect either to the filtering length or the dissipationAPPENDIX B: COMPARATIVE ANALYSIS BETWEEN
function and thus to the integral scale of the motion and itftHE MIXED AND THE ANGULAR MOMENTUM
contains only one subgrid scale coefficient. In the case oMODELS

turbulent motion of a structured fluid, where the coupling is | et us consider the spatial averag@ 5 introduced into
already present, owing to the physical nature of the problemgec. 1[Eq. (1)]. In analogy with what has already been done
the model becomes algebraic. for the operatorM [see Eqs.(3)—(6)] expandingf in the

The model performs in a very positive way. The processyeighborhood ofx and introducing the transformatiosy
of validation was based on a comparative analysis carried out s¢ we obtain

on statistical and spectral results pertinent to homogeneous
isotropic and nonisotropic turbulent flows, as well as to a zomoj sem 2m\ (2]
nonhomogenous example. The compared reference results)= E E . (2. )(Zi)
have been obtained from laboratory experiments, direct nu- ™ : :
merical simulations, and large eddy simulations relevant to
three kinds of subgrid models, namely the Smagorinsky, the X
mixed, and the statistical EDQNM models.

V_f ﬁ(m—nggo—n)gg'dg)agﬂ—lag"agf(x). (BD)
1JIy

The symmetry property of s had to be used to obtain
ACKNOWLEDGMENTS relation (B1). As a consequence, the coefficients of the ex-
pansion contain integrals whose kernels are the product of
gven powers of the components of the space varidgble
ﬁ'hese normalized integrals can be written in the form
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1
20 2B $2y v ~a,f,
APPENDIX A: EVALUATION OF THE MODEL A L & §pﬁ§q’d€—c B, (B2)
CONSTANT 1

In this section, the constant of the model, defined by Wherea,8,yeN and/, p, q is any permutation of 1, 2, and
Eq. (19) of Sec. Il B, is estimated assuming that the largest3. Notice that the same is also true for the coefficient®”
resolvable wave numbers# § lies within the inertial range, ©f the intrinsic angular momentum expansifsee Sec. Il
that the energy transfer rate from the resolved scales to th®)]. The general coefficient*#” can therefore be intro-
subgrid scales is equal to the energy dissipation taémd ~ duced into both expansior§) and (B1).
that a great separation of scales exists. In such a situation the Let us now consider the truncated fourth-ordezxpan-
energy of the subgrid scales is mostly that of their inertialsion for(f):
part. Under this assumption, YoshizéWaletermined the

constant of the scaling law for the eddy viscosity, (F)(x)=f(x)+ 3c10W2f(x) 52

vs=c,e¥36 ¢, ,~0.053. 1
Considering spherical average volumes, of raditisis pos- + H[CZ‘O’O(ﬂiJF I+ (%)
sible to write the intrinsic angular momentum introduced
into Sec. II, as +6¢H A2+ a2 a5+ 3595 F(x)] 8%+ O(8°)

3 (0 _t 1524+ F@
_ 3 (x)+FO[f]182+F@[§]6*+0(8%). (B3)
h mg JO U)\4’7T)\ dn, (Al)

To highlight the partial analogy, presented in Sec. Il B, that
links the angular momentum and the mixed models, we need
1 to compare, on one hand, the expansions in powe aff
u}\=(3a)1’2(ﬂ) the subgrid turbulent momentum stregs and of the simi-
2w larity term of the mixed modet™ and, on the other hand,
wherea is the Kolmogorov constant, which is approximately the expansions of the subgrid angular momentum stfiegs
equaf®to 1.5. IntegralA1) therefore leads to and of the stretching teru;)h; of its model(21). The use
. 9(3a) V2 of (B_3) to _approxima]'c[e{ui>;nq<ugg)and of equnsiod(?),
—c.e¥3s113 = m~0. rewritten in terms of coefficientéB2), to approximateh;,
n=oneo o 13(2m)*° 050 yields the following expansion of the ordéf.
and the constart in (19) is consequently (i) Subgrid turbulent momentum stress

whereu,, is the turbulent velocity variation over distances of
the order\. The Kolmogorov’s law yields
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7ij = (U {up) —(uiuy)
= (u;+FW[u; 162+ F@[u;16*+0(6%)
X (uj+FOLu; 16+ F@[u;16'+0(8%)
— (uu;+ F®Luju;182+ F L uju;16%+ 0(8°)
= (uFOLu ]+ uFOu = FO uu]) 62
+ (U F Ly ]+ uFOLu 1+ FOLu JF O ;]
—F@[uu;])8*+0(8%. (B4

(ii) Similarity term of the mixed moddReplacingu; ed
u; with (u;) ed(u;) in the previous result,

Tisjim: QUdQuid—Cuiug)
= (U FOLup ]+ (upFO(up)]
—FO[(uiuj)]) 6%+ (Ui FA[(u;)]
+(up FAL(u) 1+ FOL(u) IFD[(up)]
—F@[(u)(uj1) 8*+0(8°

and introducing(u;)=u;+F®[u;]+0(s* and (u;)=u;
+FM[u;]82+0(8%,

7= (uFOLu ]+ uF O] = F O ;) 62
+(UFOLu ]+ uFOLu ]+ FOLu I F D ;]
—F@Luju; 1+ uFOLFOLu 1]+ uFOLFO Ly T]
+2F WU I F O o1~ FOF®OLuu7) 64
+0(8%). (B5)

(iii) Subgrid turbulent angular momentum stress

Cij =&l ({(X Uy — (X)) ){Uj) — ({X, uu;)

=X Xuguj))]-
First, expanding

1
(X Uiy = (X )(uiy = "2 8%+ 7 [(c*00= 30

X #2uy+3ct10%,V2u,]6%+ O( 69,

then introducing  (u;y=u;+ 6*°FM[u; ]+ O(8% =u;
+ 1c10952v 2y, + O(6%) yields

(X ) = (X )(U){u;)

u
=ct0%;9,u,8%+ 3—1![(c2'°’0— 3ct19)s3u,

1
+3ct1%,v2u, ]+ E(cl’o'o)za/ukvzuj +0(6%),

while

(X ugu) = (X, )(uguy)
1
=%, (uuy) 8+ 37[(c*%= 31933 (uw))

+ 3C1’1’0(7/V2(Ukuj')]54+ O( 56)

Angular momentum equation for a fluid element 2681

One eventually obtains

u.
i 3
Cij=CLO%; 2+ £ 5[(Cz,o,o_ 3ct19) 53y,

1
+ 3C1'l’0(9/V2Uk] + E(Cl’O’O)Z&/UkVZUj
1 2,0,0 1,1 3
—gyl(e™ =3¢ 9 a7 (uu;)
+3C1’1’0(9/V2(U|(Uj)]

5*+0(685). (B6)

(iv) Stretching part of model (21) for;c
(upphj=[u;+ 3c9%2y;6°+0(5%)]

1
X Cl,O,OwJ_ 52+ —[3Cl'1'0V2(1)]'

3!

+(c200-3¢t19 g, a%u,] 5%+ 0( &)

1,0,002

=C1’O‘0inj52+ wl-Vzui
u:
+ 5 [361 0V 20 + (200

5*+0(689). (B7)

3
—=3ch9e; 4 uy]

Comparing expansion®3) and(B4) it can be seen that
the terms of the ordes? are identical. An analysis of the
difference of the fourth-order terms shows that it cannot be
equal to zero. Carrying out all the possible simplifications, it,
in fact, results that this difference is equal to the Laplacian of
the coefficient of thes? term plus the products between the
gradient of the velocity and the gradient of the Laplacian of
the velocity. An equivalent situation holds f@5) and(B6),
therefore the analogy under discussion can be inferred. The
comparison ofB3) to (B4) and of (B5)—(B6) shows that, to

the orderd?, mj~7", as does;;~(u;)h;.
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