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PHYSICS OF FLUIDS VOLUME 14, NUMBER 8 AUGUST 2002
The angular momentum equation for a finite element of a fluid: A new
representation and application to turbulent modeling

M. Iovieno and D. Tordella
Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, C.so Duca degli Abruzzi 24,
10129 Torino, Italy

~Received 7 February 2001; accepted 24 April 2002; published 20 June 2002!

The equation for the intrinsic moment of momentum averaged over small volumes of linear
dimension d has been considered. A representation of it is given as an infinite sequence of
independent equations using a series expansion in terms ofd2. The equations of different orders are
obtained through linear antisymmetric operators—with a structure that is similar to that of the
curl—acting on the momentum equation. The first-order term of the sequence is the Helmholtz
equation; the remaining terms can be considered as balances for a kind of higher-orders vorticity. It
has been shown that the coupling between the momentum and the angular momentum equation,
based on a supposed antisymmetrical part of the stress tensor—which has sometimes been assumed
by authors who deal with turbulent flow of a homogeneous fluid—is devoid of physical rationale.
A different form of coupling is proposed that may be used to describe a turbulent flow of a
homogeneous medium, using a large eddy simulation technique. In the authors model the coupling
is given by a functional dependence of the turbulent eddy diffusivity over the angular momentum of
a finite volume of a fluid. ©2002 American Institute of Physics.@DOI: 10.1063/1.1485765#
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I. INTRODUCTION

To deal with a nonhomogeneous fluid with intern
structures on which external forces and couples act, i
necessary to introduce a balance of angular moment
whose presence affects the symmetry property of the st
tensor.1–5 In this case the moment of the momentum equat
is no longer equivalent to the angular momentum budget
a new variable, the intrinsic angular momentum per unit v
ume, must necessarily be introduced.

The micropolar theory6–8 views the medium as a collec
tion of material systems, the microelements, containing m
mentum, intrinsic angular momentum, and energy. The
croelements can contain internal structures~like liquid
crystals, blood cells,...!, however, the fluid is viewed a
monophase. The motion of the microelement is fully d
scribed by the velocity of its centroid and by a second-or
tensor—called the microgyration tensor—which portrays
internal deformation and rotation of the element. The c
troid velocity and the microgyration tensor vary continous
in the external scale of the field. In an incompressible flo
Eringen’s theory leads to a set of 12 differential equatio
from which the intrinsic moment of momentum can be
covered by taking the antisymmetrical part of the microg
ration tensor. The equation of the intrinsic angular mom
tum appears to be coupled to the momentum equa
expressed in terms of the centroid velocity in such a way
to establish a link between the intrinsic motion inside t
microelements and the mean velocity field.

The equation of angular momentum balance has b
applied a few times during the last century to discuss
behavior of turbulent flows. Since the earliest application
1933 by Mattioli, the equations of motion were often int
grated over finite volumes to show the evolution of the la
2671070-6631/2002/14(8)/2673/10/$19.00
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scales of the turbulence. Even with fluids deprived of int
nal structures, asymmetry was associated to the turbu
stress in Mattioli9,10and in Nicolaevsky.11,12In Eringen,13 the
micropolar theory was applied to turbulence.

In Sec. II an analysis was carried out on the structure
the angular momentum budget over finite volumes of lin
dimensiond. The analysis is relevant to all situations whe
the fluid may be considered locally homogeneous. Throug
power series development in the square of the linear dim
sion of average we show that the balance for the intrin
momentum may be represented by an infinite successio
independent equations obtained by applying linear antis
metric operators to the momentum balance. The first-or
term of the sequence is the vorticity equation,14,15 while the
higher-order relations are not reducible to it and may
viewed as high-order vorticity budgets.

Applications of theories relevant to structured flows
turbulence are discussed in Sec. III A through an analysi
the symmetry property of the Navier–Stokes equations. T
common aspects of these theories and their physical sup
are discussed. In Sec. III B, in the ambit of turbulence mo
eling, a different kind of coupling is suggested between
momentum and angular momentum turbulent equatio
which does not rely on the supposed existence of the a
symmetric part of the stress tensor. A large eddy scale mo
that is based on the proportionality of the turbulent diffus
ity to the intrinsic moment of momentum is proposed he
The principal features of this model are the correct scaling
the eddy diffusivitynd , with respect to both the filtering
lengthd and the dissipation rate function, and the introdu
tion of a differential equation—the intrinsic angular mome
tum equation—to follow the evolution ofnd . This equation
introduction should be advantageous in the case of sim
tion of nonequilibrium turbulence fields, since it adds a d
3 © 2002 American Institute of Physics
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2674 Phys. Fluids, Vol. 14, No. 8, August 2002 M. Iovieno and D. Tordella
gree of freedom to the model. A natural application for th
model would be the turbulent motion of suspensions of m
sive particles on which external couples apply, such as,
example, a dusty plasma flow. In such a case the mo
would no longer be differential since the coupling betwe
the momentum and the angular momentum equations is
ready present and associated to the physics of the prob
The model validation is described in Sec. III C.

II. ANGULAR MOMENTUM AND VORTICITY IN
MONOPHASE FLOWS

The relationship between angular momentum and vor
ity and between their equations is considered here. It is u
ally assumed that vorticity represents the angular velocity
a small volume of fluid. The vorticity equation is obtained
considering the curl of the momentum equation. Working
volume-averaged equations, at a first-order approximatio
the angular momentum expanded in the square of the lin
dimension of averaged, Nigmatulin and Nikolaevsky,15 for
an incompressible flow, and Chatwin,14 for a barotropic flow,
showed the proportionality of vorticity to the angular m
mentum.

Here we have expanded the intrinsic angular momen
in the neighborhood of a pointx by means of a power serie
in d. The expansion is carried out at the general ordern. As
a result, an infinite sequence of independent linear antis
metric differential operators, the first of which is the curl,
obtained. Applying the operators to the momentum balan
a correspondent infinite sequence of independent equatio
also obtained, where the first-order term is the Helmho
equation.

In the neighborhood of a pointx,

Id5$x1hPR3:ihi,d%,

the spatial average operator^•&d ,

^w&d~x,t !5
1

Vd
E

Id

w~x1h,t !dh, ~1!

has been introduced, whered is the linear dimension ofVd ,
which is the volume ofId . To simplify the notation, suffixd
will be usually omitted in the following. The intrinsic mo
ment operatorM acting on a vector fieldf is defined as

~Mf ! i5« i jk~^xj f k&2^xj&^ f k&!. ~2!

Expandingf in the neighborhood ofx, we obtain

~Mf ! i5« i jk(
t50

`

(
s50

t

(
r 50

s
1

t! S t
sD S s

r D
3] j

r]p
s2r]q

t2sf kS 1

Vd
E

Id

h j
r 11hp

s2rhq
t2sdhD , ~3!

where j , p, andq are clockwise permutations of 1, 2, and
The transformationh5dz shows the dependence on th
powers ofd,
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
s-
r

el
n
l-

m.

-
u-
f

n
of
ar

m

-

e,
is

z

1

Vd
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Id

h j
r 11hp

s2rhq
t2sdh

5S 1

V1
E

I1

z j
r 11zp

s2rzq
t2sdzD d t11. ~4!

Due to the symmetry property ofId , the nonzero integrals in
~4! are those for whicht, s, and r are all odd. Placingt
52n11,s52m11,r 52l 11 we define the coefficients

an,m,l5
1

V1
E

I1

z j
2(l 11)zp

2(m2l )zq
2(n2m)dz, ~5!

which represent the moments of the average volume of
radius. Due to the symmetry of the average volume, th
coefficients do not depend on the permutationsj , p, andq.

In such a way the operatorM is expanded in a series o
power ofd2:

M5 (
n50

`
d2n12

~2n11!!
A(n), ~6!

where

Aik
(n)5« i jk (

m50

n

(
l 50

m S 2n11
2m11D S 2m11

2l 11 D
3an,m,l ] j

2l 11]p
2(m2l )]q

2(n2m) .

The mean intrinsic angular momentum per unit massh of
each elementId is defined as

^r&h5M ~ru!. ~7!

From ~6!, and similar expansions of the averaged de
sity, e.g.,

^r&215r21S 12a0,0,0¹2r
d2

2
1O~d4! D ,

truncated expansions for the intrinsic angular momentum
be obtained. For instance, the expansion of the fourth o
is

hi5a0,0,0« i jk

] j~ruk!

r
d21

1

r S 2
1

2
~a0,0,0!2« i jk] j~ruk!

¹2r

r

1
1

3!
@3a1,0,0¹2« i jk] j~ruk!

1~a1,1,123a1,0,0!« i jk] j
3~ruk!# D d41O~d6!. ~8!

The operatorM applied to the momentum equation,

f k~x,t ![] t~ruk!1] l ~rukul !2] l skl 2rbk50,

wheres is the stress tensor andb is an external force field,
yields the budget forh in terms of a series expansion ind2.
Since this equation is an identity ind, the coefficient of each
d2(n11) must vanish independently; that is,A(n)f50, ;n
PN, which reduces to

« i jk ] j
2n11f k~x,t !50, ;nPN, i , j ,k51,2,3,
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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2675Phys. Fluids, Vol. 14, No. 8, August 2002 Angular momentum equation for a fluid element
as can be shown by induction. Free of any approximat
the angular momentum budget leads to a sequence of d
ential equations that cannot be reduced to each other,
leading order of which is the vorticity equation. Thus,h can-
not be described in terms of only vorticityv. Only whend
→0, h does contain the same amount of information asv,
but in this casev goes to zero asd2.

The higher-order equations of the sequence may be
terpreted as balances for high-order vorticities. The resu
quite general because it is not restricted by the partic
nature of the constitutive equation, as long as the latter
scribes a fluid—even though with internal structures—a
fluid with bulk properties. The higher-order terms of th
sequence may become useful in turbulence applicati
where auxiliary-independent equations are required for
correlation variables that are introduced by the filtering p
cess.

III. ANGULAR MOMENTUM AND TURBULENCE

A. Applications to turbulence of structured fluid
theories

In Eringen,13 the microfluid theory, that was conceive
for structured fluids, was applied to a turbulent flow of
nonstructured fluid. Analogous approaches were propose
the past by Mattioli9,10 and Ferrari,16 where an intrinsic an-
gular momentum was introduced to represent the turbu
transport, and by Nikolaevsky,11,12 who approximated the
volume average of the spatial derivatives in terms of an
cremental ratio of surface integrals thus introducing asy
metry into the turbulent stress.

The crucial point of these theories is the coupling b
tween the momentum and the moment of momentum eq
tions. In all these theories the distribution of the mean
locities depends on the motion of internal rotation, which
considered as the structural property of the elemental c
the so-called microelements. The mathematical coupling
tween the two kinematical aspects is due to the presenc
the antisymmetrical part of the stress tensor in both mom
tum and angular momentum equations.

This aspect is explicitly declared in Mattioli and it ha
been renewed by Ferrari and Nicolaevsky, but is also a n
essary element in the model by Eringen. All these theo
seem capable of reproducing experimental results concer
turbulent sheared flows. In spite of this, their common a
decisive component—the coupling between the momen
and angular momentum equations through an antisymm
cal part of the stress tensor—is an arbitrary choice, wh
validity in the case of a homogenous fluid can be prov
false.

The volume average for a functionf , already introduced
in Sec. II, may be written as

^ f &~x!5E
R3

gd~x2y! f ~y!dy5E
R3

gd~y! f ~x2y!dy, ~9!

where f and gdPL1, together with their derivatives. Func
tion gd is the weight function that shapes the space port
where the average is taken. Under these assumption, the
spatial derivative and the volume average commute:
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^] i f &~x!5E
R3

gd~y!] i f ~x2y!dy

5E
R3

] i@gd~y! f ~x2y!#dy5] i^ f &. ~10!

Relation ~10! implies that this spatial filtering is unable t
break the symmetry property of flow tensors, independen
of the kind of regime of motion, whether laminar or turb
lent. To verify this inference, it is sufficient to apply th
filtering to the Navier–Stokes equations that, in case of
compressible flow, yields

rDt^ui&5] j@2^pd i j &1m~] j^ui&1] i^uj&!

1r~^ui&^uj&2^uiuj&!#. ~11!

The theories by Mattioli, Ferrari, and Nikolaevsky ado
the following structure for incompressible turbulence equ
tions of a homogeneous fluid:

rDt^ui&5] js i j 1] jt i j
a 1] jt i j

s , ~12!

rDthi5« i jkt jk
a 1] j ci j 1] j§ i j , ~13!

where superscriptsa ands stand for antisymmetric and sym
metric and all the tensors are volume-averaged quanti
s i j and t i j are the molecular and turbulent stress tenso
while § i j , ci j are the molecular and turbulent flow tensors
angular momentum, respectively. There is no doubt that
averaged velocity indicates the same variable in Eqs.~11!
and ~12! and thus that the equations cannot both be true

In Mattioli’s theory the antisymmetrical part of the tu
bulent stress is assumed and interpreted as the mome
transport due to the vortical structures of the small scales
are filtered from the equation. A model is therefore requir
for this term. He also assumed, though not quite legitimat
since he dedicated an evolutive equation to it, that the int
sic moment is proportional to the vorticity. The angular m
mentum budget thus becomes an equation that operate
the vorticity. This budget has, however, a different structu
from the original Helmholtz equation because of the pr
ence of the term« i jkt jk

a . In this manner one dependent var
able is dropped. The balance is then used to model the
bulent transport coefficient. Contrary, to what has been d
for the momentum, the inertial tensorci j is assumed sym-
metric.

Nikolaevskij,11 while computing~9! over cubes, intro-
duces an approximation of the second order ind that induces
the lost of property~10! and thus of the property of symme
try of the averaged equation, inside which he obtains
divergence of asymmetrical tensors. He, in fact, uses
Gauss theorem to transform the integral of the diverge
into a surface integral. He then he approximates derivati
with the incremental ratios:

K ] f

]xi
L 5

]

]xi
@ f # ( i )1O~d2!,

where one should not sum over the index in parentheses
@ f # ( i ) is defined by
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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@ f # ( i )5~2d!22E
2d

d E
2d

d
f ~x1h jej1hkek!dh jdhk .

Nikolaevskij neglects the termsO(d2). In so doing, he loses
the symmetry of the tensors involved in the equations,
gether with the commutability.

In the application of the microfluid theory to turbulenc
by Eringen,13 the turbulent flow is considered as the moti
of a simple microfluid, even though any physical intern
structure that could cause asymmetry is missing.

The motion of the micropolar element is described
the mean velocityvk(x,t) and by the microgyration tenso
nkl(x,t) (k,l 51,2,3). The latter arises from the motion an
deformations of material points inside the volume of the m
croelement. The resulting system of equations—which
not reducible to the filtered Navier–Stokes equations
comprehends 12 scalar equations for the three componen
the mean velocity and for the nine components ofnkl(x,t)
and contains 23 constant viscosity coefficients. The intrin
moment of the momentum equation, which can be obtai
from the antisymmetrical part ofnkl(x,t), is coupled to the
momentum equation through the antisymmetrical part of
stress tensor, as in Mattioli and Nikolaevsky. In his solut
for the two-dimensional~2-D! turbulent channel flow, Erin-
gen gives a solution of his system of equations where
stress tensor is nonsymmetric. The constant coefficie
which are only five thanks to the simple domain geome
were adjusted according to the experimental observation
Laufer.17 However, it is easily seen that if the nonsymmet
part of the stress tensor is placed equal to zero, the equa
result to be uncoupled and the mean motion would be in
pendent of the internal motion of the microelements.

B. Angular momentum large eddy model for turbulent
flows

In this paragraph we would like to propose a differe
kind of coupling of the momentum and angular moment
equations, which does not require that a nonsymmetry pa
the stress tensor exists. In the framework of the large e
scale simulation, a new differential model is proposed for
turbulent stresses that is based on a Boussinesq tran
coefficient that is proportional to the mean intrinsic mome
modulush, a flow integral quantity that takes into accou
velocity derivatives of any odd order@see Sec. II, Eqs.~6!
and~7!#, and that is supposed to include both the mechan
of stretching and the process of autodiffusion. The coupl
between the momentum and moment of momentum eq
tions is thus given by the functional dependence of the e
diffusivity over the intrinsic angular momentum of a fini
volume of a fluid. Let us consider the incompressible m
mentum equation,

] t~uk!1] l ~ukul !5
1

r
] l skl 1bk ,

whereskl , bk are the stress tensor and the external fie
respectively. Applying the average operator^•&d , the mo-
mentum equation is written in the following form:

Dt^ui&5r21] j^s i j &1] jt i j 1^bi&, ~14!
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
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wheret i j 5^ui&^uj&2^uiuj& is the turbulent momentum flow
per unit mass. The intrinsic angular momentum equation
obtained by applying the operatorM @relation~2! in Sec. II#
to the incompressible Navier–Stokes equation. The addi
of the term« i l k@(^xluk&2^xl&^uk&)^uj&#—the convection of
the intrinsic angular momentum per unit mass by means
the averaged velocity field—to each side of the result
balance yields the following equation forhi , that is, the
intrinsic angular momentum per unit mass of the elementId

@see~7!, Sec. II#:

Dthi5r21] j§ i j 1] j ci j 1b i , ~15!

where

ci j 5« i l k@~^xluk&2^xl&^uk&!^uj&2~^xlukuj&

2^xl&^ukuj&!#, ~16!

§ i j 5« i l k~^xlsk j&2^xl&^sk j&!, ~17!

b i5« i l k~^xlbk&2^xl&^bk&!, ~18!

are, respectively, the inertial~containing stretching! and in-
teraction flow tensors of angular momentum andb is the
couple associated to the external fieldb.

The terms inside Eqs.~14! and~15! that need to be rep
resented through a model are the turbulent momentum
angular momentum stresses. The functional relations
which the model relies are all Galilean invariants and
listed below:

nd5ch, ~19!

t i j 5ch~] j^ui&1] i^uj&2 2
3 ]k^uk&d i j !, ~20!

ci j 5^ui&hj1ch~] jhi1] ihj2
2
3 ]khkd i j !, ~21!

wherec is a subgrid constant.
The first term on the right-hand side of~21! represents

the role played by the stretching, while the other simula
the momentum transfer due to the turbulent convection. T
present day reference large eddy simulation method is ba
on the adoption of Smagorinsky’s18 or the vorticity19 models,
which assume a local invariance of the turbulent motio
Thus, in the immediate vicinity of a point, in time and spac
a dynamical similarity is assumed throughout the field. T
nondimensionalization of the field is based on the existe
of local turbulent scales that are small enough to adjust to
slowly changing environment in the external scale. With t
model one degree of freedom is introduced—the intrin
angular momentum—which is portrayed by a relevant diff
ential equation, which is coupled but, however, independ
of the momentum equation. In this way we also hope to
able to simulate a turbulent flow that is not in local equili
rium. This would, of course, depend on the propriety w
which the turbulent flow tensor of the intrinsic moment
momentum is modeled. In relation~21! it was attempted to
insert the two major inertial phenomena that are presen
the level of the subgrid scales, the stretching and the tra
port due to the turbulent convection.

In spite of the introduction of an additional differentia
equation, only one subgrid constantc appears in the model
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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Assuming that the largest resolvable wave number
within the inertial range, that the energy transferred from
resolved scales to the subgrid scales is equal to the en
dissipated by the latter and that the energy of the sub
scales is that contained by their inertial part~see Lilly20 and
Yoshizawa21! constantc may be estimated as 0.066~see Ap-
pendix A for details!.

Note that in local turbulence equilibrium conditions th
scaling of the turbulent viscosity, with respect to the dissi
tion functione and the filtering lengthd, is the same as tha
of the intrinsic angular momentum,

h;d4/3e1/3;nd . ~22!

For the derivation of these scaling laws see Monin a
Yaglom22 as regardsh and Yoshizawa,21 Leslie and Quarini23

as regardsnd .
As a comment on the functional structure of the pres

model, it is possible to draw a parallel between the latter
the mixed subgrid model~Bardinaet al., 1980!:24

t i j
mix5csim~ ^̂ ui&&^̂ uj&&2 ^̂ ui&^uj&&!12~csd!2u^D&u^Di j &,

wherecsim andcs are the similarity and Smagorinsky subgr
coefficients andDi j is the strain rate tensor. The analog
consists in the fact that the first terms of the expansion
series ofd of the similarity subgrid tensort i j

sim and of the real
subgrid tensor (t i j 5^ui&^uj&2^uiuj&) are both proportiona
to ]mui]mujd

2, while the first terms of the expansions
series ofd of relation ~21! and of the inertial tensor of the
flow of intrinsic angular momentum~16! are both propor-
tional to uiv jd

2 ~see Appendix B for details!. From this as-
pect we can infer that the present model could featur
certain degree of backscatter: directly onhi and indirectly on
nd . Also of interest is the fact that—in the context of spect
numerical simulations—the number of spectral products
are necessary to implement the angular momentum mode
spite of the fact that it is a differential model, is exactly t
same as the number of spectral products that are necess
implement the mixed model.

In short, the main features of this model are the follo
ing: the capability of following the evolution ofh, and thus
of nd , through a relevant differential equation and the pro
scaling with respect to the filtering length and the dissipat
rate. The differential nature would suggest an employmen
nonequilibrium turbulent flows for simulations.

A unique feature of the present model is its natural c
venience to simulate the dynamics of structured fluid in t
bulent motion. In this case, the coupling between the m
mentum and angular momentum equations already ha
been introduced by the physics of the system, the mo
reduces from differential to algebraic.

C. Numerical validation of the angular momentum
large eddy model

The results obtained from tests concerning the statist
and spectral properties of~i! homogeneous and isotropic tu
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bulence, ~ii ! homogeneous turbulence undergoing a so
body rotation, and~iii ! shear-free nonhomogeneous turb
lence are presented in this section.

Before beginning the discussion on the numerical te
the criteria adopted to carry out the comparison of the an
lar momentum model in the simplest way with different su
grid models are described—the Smagorinsky and the mi
models—being chosen as reference. Since an optim
value for the angular momentum model subgrid constan
not yet available at this stage, all the models are conside
through their basic representation, which is founded o
subgrid scale coefficient deduced from the knowledge
only the Kolmogorov constant@Lilly’s value20 for the Sma-
gorinsky model; see Bardinaet al. ~1980!24 and Meneveau
and Katz~1996!25 for the mixed model and Appendix A fo
the present model#. In this way it has been attempted to fre
the analysis from the peculiarities of the optimization pr
cess, which is always based on empirical information, whi
if not known well and reproduced, could spoil the mutu
comparisons of the models. Our analysis is mostly carr
out using the very basic values of the subgrid coefficien
with a few supplements of information relevant to the Sm
gorinsky and mixed models—utilized with optimize
coefficients25—to be introduced into the comparative anal
sis, where opportune. On the other hand, to escape from
complexity linked to the introduction of a further step in th
modeling process, we will also avoid comparing the mod
in the version that arises from the implementation of t
dynamical procedure,26 which, nevertheless, could always b
adopted to substantially improve the performance of all
subgrid models~see the review by Meneveau and Kat
2000!.25 The angular momentum subgrid model could,
course, undergo the dynamical procedure as could any o
subgrid scale model.

The homogeneous and isotropic field used as the in
condition for all the large eddy simulations carried out
validate the present model is the 5123 DNS database by
Wray.27 The initial distribution of the volume-averaged ve
locities and intrinsic moment of momenta are determined
averaging Wray’s data over cubes with 2d sides correspond
ing to a LES spatial resolution of 643 points.

The energy temporal decays of homogeneous and iso
pic turbulence, obtained from pseudospectral Navier–Sto
simulations over 643 points, implementing the angular mo
mentum, the Smagorinsky and the mixed models, are sh
in Fig. 1~a!, together with the decay produced by the dire
numerical simulation by Wray27 over 5123 points.

To make the LES temporal decays, obtained after filt
ing the DNS data, and the DNS decay comparable, the
decay is also shown after having applied at each insta
low-pass filter on the spectral energy that consists of
integration of the three-dimensional energy spectrum
included in the database at different eddy turnover time
over the lowest 32 wave numbers, which is equivalent t
spatial resolution of 643 points for the large eddy simula
tions.

The angular momentum model behaves well, since
performs slightly better than the basic Smagorinsky and
mixed models. The performances become equivalent if
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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Smagorinsky and the mixed models use their optimized s
grid constants. Figure 1~b! shows the compensated ener
spectra, att/t53.7 and Rel;65, as established through th
experiments by Comte-Bellot and Corrsin,28 the direct nu-
merical simulation by Wray and through large eddy simu
tions based on the angular momentum model and the S
gorinsky and mixed subgrid models. In these diagrams
presence of a horizontal asymptote means the inertial ra
is reached. In this regard it is can be seen that the b
~nonoptimized! angular momentum model results to b
slightly more accurate than the other two models, even
used with their optimized subgrid coefficients.

A result concerning the energy transfer that character
a decaying homogeneous turbulent field under solid b
rotation is presented for validation purposes in an anisotr
situation. Figure 2 presents the dependence of the velo
derivative skewnessS, a quantity linked to the enstroph
production, on the inverse of the instantaneous micro-Ros

FIG. 1. Homogeneous isotropic turbulence:~a! turbulent kinetic energy de-
cay; ~b! compensated three-dimensional energy spectra att/t53.7. For all
the simulations, the initial condition of the velocity field is taken from Wr
~Ref. 27!.
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number Rov85v8/2V, wherev8 is the root mean squar
value of the vorticity andV is the background vorticity. The
two angular momentum large eddy simulations performed
initial micro-Rossby numbers greater than and nearly eq
to 1 show a very good agreement with two different sets
data: the analytical representation of the evolutionS
5S(Rov8) deduced from the collapse over a unique curve
many runs—with different initial Rov8 and a suddenly im-
posed rotation—of the basic EDQNM~eddy damped quasi
normal Markovian! model @see Cambonet al. ~1997!,29 Fig.
3 and formula~3.5!# and two direct numerical computation
at initial micro-Rossby numbers close to the ones we tes

The angular momentum large eddy simulations in t
case rely on a modified version of the averaged equat
~14! and~15! written in a rotating frame of reference~in the
absence of external forces and with centrifugal terms ass
ated to the pressure gradient!:

Dt^ui&12« i l kV l ^uk&5r21] jsk j1] jt i j , ~23!

Dt hi12« i l k«kmnVm~^xl un&2^xl &^un&!

5r21] j§ i j 1] j ci j , ~24!

whereV l is the background constant angular rotation a
the second term on the left-hand side of~24! is
approximated—through a development in series ofd of
un—by

r i'
2
3 « i l k«kmnVm] l ^un&d

2.

This expression can be simplified, using Ricci’s formul
(« i l k«kmn5d imd ln2d ind lm) and the incompressibility con
straint, to

FIG. 2. Homogeneous turbulence undergoing a solid body rotation w
angular speedV. Velocity derivative skewness as a function of the inver
of the micro-Rossby number. For the angular momentum model simulati
the initial condition is taken from Wray~Ref. 27! and the computed points—
black filled circles—are regularly spaced in time by 0.41 eddy turno
times. The ensemble average that defines the velocity derivative skewnS
is approximated through the volume average over the whole computati
domain.
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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r i'2 2
3 V l ] l ^ui&d

2.

This Coriolis angular momentum and the corresponding
riolis force, the second term on the left-hand side of~23!, are
independent of the actual location of the axis of rotation a
set the occurrence of a uniform background vorticity of va
2V on the flow, at a given initial time. During the next tem
poral decay of an initially isotropic and homogeneous tur
lence, the background vorticity resists and prevents the tw
ing and stretching mechanism caused by the turbule
itself, which leads to a decrease of the decay rate of
turbulent kinetic energy. This phenomenology characteri
the numerical simulations of Fig. 2, where a much fas
decay~together with an initial conservation of the properti
of isotropy and three-dimensionality29,30! of the velocity de-
rivative skewness corresponds to simulations with a low
initial Rossby number.

For the right-hand sides of~23! and ~24! reference is
made to Sec. III B.

The last validation result we present corresponds t
nonhomogeneous situation. The considered flow is the sh
less mixing layer between two homogeneous and isotro
turbulences that have different kinetic energies. Also in t
case, the angular momentum model performs very well, t
confirming the good spectral and correlation properties d
onstrated in the preceeding two examples. In particula
can be noticed that its accuracy is higher than that of
basic Smagorinsky model (cs50.18) and it is equivalent to
that of the optimized Smagorinsky model (cs50.10), even
though it has not yet experienced an optimization proc
and its subgrid coefficient is based on the one and only p
of knowledge of the Kolmogorov constant. Figure 3 sho
the profiles of the turbulent kinetic energy and veloc
skewness of the mixing. The profile that gives a better in
cation of the prediction capability of the mixing dynamics
the skewness profile: the parameters that show a good i
mittency behavior are the value and the position of the ma
mum of the skewness. The angular momentum simulati
yield a velocity skewness profile that compares very w
with the direct numerical simulation by Briggset al. ~1996!31

and the experiment by Veeravalli and Warhaft~1989!32 and
that compares in the previously described way with rega
to the Smagorinsky model.18 This set of simulations is base
on initial homogeneous and isotropic turbulent fields
Wray27 and Orlandi.33

All the presented large eddy simulations were obtain
by means of a new dealiased pseudospectral Four
Garlekin Navier–Stokes code~see Iovienoet al.34!, imple-
menting a fourth-order explicit Runge–Kutta scheme in
low storage version by Jamesonet al. ~1981!.35

IV. CONCLUSIONS

By means of a series expansion in terms ofd22d being
the linear dimension of the average—a new representatio
the averaged angular momentum balance has been d
mined in terms of an infinite sequence of independent dif
ential equations where linear antisymmetric operators ac
the momentum. The first term of the sequence is the He
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
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holtz equation. The others may be viewed as kinds of hi
order vorticity equations and could be used in turbulen
mechanics as auxiliary equations to describe the evolutio
the correlation variables obtained from the filtering of t
turbulent equations. This representation could also be app
to the motion of structured fluid, as long as they can
considered as locally homogeneous.

The spatial filtering is not able to introduce asymmetr
into homogeneous flows, even though they are in turbu
motion. The application of models suited to flows of a stru
tured fluid and characterized by the coupling of the mom
tum and angular momentum equations, through the prese
of an antisymmetric part of the stress tensor, to turbul
flows is not justified in our opinion.

FIG. 3. Shear-free decaying turbulent mixing (t/t55.35): ~a! profile of the
nondimensional turbulent kinetic energy;~b! profile of the velocity skew-
ness. Whenever not differently specified, the initial condition for the la
eddy simulations is taken from Wray~Ref. 27!. The ensemble average
defining the velocity skewness are approximated through the computatio
mean values over surfaces normal to the non homogeneity direction.
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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2680 Phys. Fluids, Vol. 14, No. 8, August 2002 M. Iovieno and D. Tordella
A new differential large eddy scale model has been p
posed that is based on a different kind of coupling of
momentum and angular momentum equations and that r
on the assumption of a turbulent diffusivity that is propo
tional to the intrinsic moment of momentum. This couplin
does not spoil the symmetry property of the stress ten
The model shows a proper scaling of the eddy diffusiv
with respect either to the filtering length or the dissipati
function and thus to the integral scale of the motion and
contains only one subgrid scale coefficient. In the case
turbulent motion of a structured fluid, where the coupling
already present, owing to the physical nature of the probl
the model becomes algebraic.

The model performs in a very positive way. The proce
of validation was based on a comparative analysis carried
on statistical and spectral results pertinent to homogene
isotropic and nonisotropic turbulent flows, as well as to
nonhomogenous example. The compared reference re
have been obtained from laboratory experiments, direct
merical simulations, and large eddy simulations relevan
three kinds of subgrid models, namely the Smagorinsky,
mixed, and the statistical EDQNM models.
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APPENDIX A: EVALUATION OF THE MODEL
CONSTANT

In this section, the constantc of the model, defined by
Eq. ~19! of Sec. III B, is estimated assuming that the larg
resolvable wave number 2p/d lies within the inertial range,
that the energy transfer rate from the resolved scales to
subgrid scales is equal to the energy dissipation rate« and
that a great separation of scales exists. In such a situation
energy of the subgrid scales is mostly that of their iner
part. Under this assumption, Yoshizawa21 determined the
constant of the scaling law for the eddy viscosity,

nd5cn«4/3d1/3, cn'0.053.

Considering spherical average volumes, of radiusd, it is pos-
sible to write the intrinsic angular momentumh, introduced
into Sec. II, as

h'
3

4pd3 E
0

d
ul4pl3dl, ~A1!

whereul is the turbulent velocity variation over distances
the orderl. The Kolmogorov’s law yields

ul5~3a!1/2S «l

2p D 1/3

,

wherea is the Kolmogorov constant, which is approximate
equal20 to 1.5. Integral~A1! therefore leads to

h5ch«4/3d1/3, ch5
9~3a!1/2

13~2p!1/3'0.80,

and the constantc in ~19! is consequently
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a value that has been successfully confirmed through
validation process described in Sec. III C@also see Iovieno
~2001!36#.

APPENDIX B: COMPARATIVE ANALYSIS BETWEEN
THE MIXED AND THE ANGULAR MOMENTUM
MODELS

Let us consider the spatial average^ f &d introduced into
Sec. II@Eq. ~1!#. In analogy with what has already been do
for the operatorM @see Eqs.~3!–~6!# expandingf in the
neighborhood ofx and introducing the transformationh
5dz, we obtain

^ f &5 (
m50

`

(
j 50

m

(
i 50

j
d2m

~2m!! S 2m
2 j D S 2 j

2i D
3S 1

V1
E

I1

z1
2(m2 j )z2

2( j 2 i )z3
2idzD ]1

m2 j]2
j 2 i]3

i f ~x!. ~B1!

The symmetry property ofId had to be used to obtain
relation ~B1!. As a consequence, the coefficients of the e
pansion contain integrals whose kernels are the produc
even powers of the components of the space variablez.
These normalized integrals can be written in the form

1

V1
E

I1

z l
2azp

2bzq
2gdz5ca,b,g, ~B2!

wherea,b,gPN andl , p, q is any permutation of 1, 2, and
3. Notice that the same is also true for the coefficientsan,m,l

of the intrinsic angular momentum expansion@see Sec. II
~5!#. The general coefficientca,b,g can therefore be intro-
duced into both expansions~6! and ~B1!.

Let us now consider the truncated fourth-orderd expan-
sion for ^ f &:

^ f &~x!5 f ~x!1 1
2 c1,0,0¹2f ~x!d2

1
1

4!
@c2,0,0~] l

4 1]p
41]q

4! f ~x!

16c1,1,0~] l
2 ]p

21] l
2 ]q

21]p
2]q

2! f ~x!#d41O~d6!

5 f ~x!1F (1)@ f #d21F (2)@ f #d41O~d6!. ~B3!

To highlight the partial analogy, presented in Sec. III B, th
links the angular momentum and the mixed models, we n
to compare, on one hand, the expansions in powers ofd2 of
the subgrid turbulent momentum stresst i j and of the simi-
larity term of the mixed modelt i j

sim and, on the other hand
the expansions of the subgrid angular momentum stress~16!
and of the stretching term̂ui&hj of its model~21!. The use
of ~B3! to approximatêui& and^uiuj& and of expansion~8!,
rewritten in terms of coefficients~B2!, to approximatehi ,
yields the following expansion of the orderd4.

~i! Subgrid turbulent momentum stress:
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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t i j 5^ui&^uj&2^uiuj&

5„ui1F (1)@ui #d
21F (2)@ui #d

41O~d6!…

3„uj1F (1)@uj #d
21F (2)@uj #d

41O~d6!…

2„uiuj1F (1)@uiuj #d
21F (2)@uiuj #d

41O~d6!…

5~uiF
(1)@uj #1ujF

(1)@ui #2F (1)@uiuj # !d2

1~uiF
(2)@uj #1ujF

(2)@ui #1F (1)@ui #F
(1)@uj #

2F (2)@uiuj # !d41O~d6!. ~B4!

~ii ! Similarity term of the mixed model. Replacingui ed
uj with ^ui& ed ^uj& in the previous result,

t i j
sim5 ^̂ ui&&^̂ uj&&2 ^̂ uiuj&&

5~^ui&F
(1)@^uj&#1^uj&F

(1)@^ui&#

2F (1)@^uiu j&#!d21~^ui&F
(2)@^uj&#

1^uj&F
(2)@^ui&#1F (1)@^ui&#F (1)@^uj&#

2F (2)@^ui&^uj&#!d41O~d6!

and introducing^ui&5ui1F (1)@ui #1O(d4) and ^uj&5uj

1F (1)@uj #d
21O(d4),

t i j
sim5~uiF

(1)@uj #1ujF
(1)@ui #2F (1)@uiuj # !d2

1~uiF
(2)@uj #1ujF

(2)@ui #1F (1)@ui #F
(1)@uj #

2F (2)@uiuj #1uiF
(1)@F (1)@uj ##1ujF

(1)@F (1)@ui ##

12F (1)@ui #F
(1)@uj #2F (1)@F (1)@uiuj ## !d4

1O~d6!. ~B5!

~iii ! Subgrid turbulent angular momentum stress:

ci j 5« i l k@~^xl uk&2^xl &^uk&!^uj&2~^xl ukuj&

2^xl &^ukuj&!#.

First, expanding

^xl uk&2^xl &^uk&5c1,0,0] l ukd
21

1

3!
@~c2,0,023c1,1,0!

3] l
3 uk13c1,1,0] l ¹2uk#d

41O~d6!,

then introducing ^ui&5ui1d2F (1)@ui #1O(d4)5ui

1 1
2c

1,0,0d2¹2ui1O(d4) yields

~^xl uk&2^xl &^uk&!^uj&

5c1,0,0uj] l ukd
21S uj

3!
@~c2,0,023c1,1,0!] l

3 uk

13c1,1,0] l ¹2uk#1
1

2
~c1,0,0!2] l uk¹

2uj D1O~d6!,

while

^xl ukuj&2^xl &^ukuj&

5c1,0,0] l ~ukuj !d
21

1

3!
@~c2,0,023c1,1,0!] l

3 ~ukuj !

13c1,1,0] l ¹2~ukuj !#d
41O~d6!.
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ci j 5c1,0,0uiv jd
21« i l kS uj

3!
@~c2,0,023c1,1,0!] l

3 uk

13c1,1,0] l ¹2uk#1
1

2
~c1,0,0!2] l uk¹

2uj

2
1

3!
@~c2,0,023c1,1,0!] l

3 ~ukuj !

13c1,1,0] l ¹2~ukuj !# D d41O~d6!. ~B6!

~iv! Stretching part of model (21) for ci j

^ui&hj5@ui1
1
2 c1,0,0¹2uid

21O~d4!#

3S c1,0,0v jd
21

1

3!
@3c1,1,0¹2v j

1~c2,0,023c1,1,0!« j l k] l
3 uk#d

41O~d6! D
5c1,0,0uiv jd

21S ~c1,0,0!2

2
v j¹

2ui

1
ui

3!
@3c1,1,0¹2v j1~c2,0,0

23c1,1,0!« j l k] l
3 uk# D d41O~d6!. ~B7!

Comparing expansions~B3! and~B4! it can be seen tha
the terms of the orderd2 are identical. An analysis of the
difference of the fourth-order terms shows that it cannot
equal to zero. Carrying out all the possible simplifications,
in fact, results that this difference is equal to the Laplacian
the coefficient of thed2 term plus the products between th
gradient of the velocity and the gradient of the Laplacian
the velocity. An equivalent situation holds for~B5! and~B6!,
therefore the analogy under discussion can be inferred.
comparison of~B3! to ~B4! and of~B5!–~B6! shows that, to
the orderd2, t i j 't i j

sim, as doesci j '^ui&hj .
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