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Variable scale filtered Navier–Stokes equations: A new procedure
to deal with the associated commutation error
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A simple procedure to approximate the noncommutation terms that arise whenever it is necessary to
use a variable scale filtering of the motion equations and to compensate directly the flow solutions
from the commutation error is here presented. Such a situation usually concerns large eddy
simulation of nonhomogeneous turbulent flows. The noncommutation of the average and
differentiation operations leads to nonhomogeneous terms in the motion equations, that act as source
terms of intensity which depend on the gradient of the filter scaled and which, if neglected, induce
a systematic error throughout the solution. Here the different noncommutation terms of the motion
equation are determined as functions of thed gradient and of thed derivatives of the filtered
variables. It is shown here that approximated noncommutation terms of the fourth order of accuracy,
with respect to the filtering scale, can be obtained using series expansions in the filter width of
approximations based on finite differences and introducing successive levels of filtering, which
makes it suitable to use in conjunction with dynamic or mixed subgrid models. The procedure
operates in a way which is independent of the type of filter in use and without increasing the
differential order of the equations, which, on the contrary, would require additional boundary
conditions. It is not necessary to introduce a mapping function of the nonuniform grid in the
physical domain into a uniform grid in an infinite domain.A priori tests on the turbulent channel
flow (Ret 180 and 590! highlight the approximation capability of the present procedure. A numerical
example is given, which draws attention to the nonlocal effects on the solution due to the lack of
noncommutation terms in the motion equation and to the efficiency of the present procedure in
reducing the commutation error on the solution. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1577345#
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I. INTRODUCTION

The problem of the noncommutativity of the filterin
operation has been considered by Ghosal and Moin~1995!,1

van der Ven~1995!,2 Fureby and Tabor~1997!,3 Vasilyev
et al. ~1998!4 and reviewed by Ghosal~1999!5 and Sagaut in
his monography on large eddy simulation~LES! for incom-
pressible flows~2001!.6

Ghosal and Moin1 showed that the commutation error
of the second order in the filter width. Introducing a filt
definition built on the mapping function of the nonunifor
grid, they proposed a procedure that can be used when
numerical schemes based on pseudospectral methods
finite differencing of an order higher than the second or
are employed. The noncommutation terms are expanded
Taylor series in the filter width, where the coefficients d
pend on the spatial derivatives of the filtered field and
mapping function. In this way, extra terms appear in the
tered equations, which increase the differential order of
equations. The authors suggested both the use of addit
boundary conditions to maintain the well-posedeness of
problem or the use of asymptotic expansions of the filte
1921070-6631/2003/15(7)/1926/11/$20.00
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variables, in terms of the square of the filter width, whi
however requires the solution of additional nonhomogene
perturbative problems.

A family of one parameter filters commuting with differ
entiation up to any given order in the filter width, which
assumed nonuniform in the integration domain, was c
structed by van der Ven.2 If a discretization scheme of a
given order is adopted in a LES, one may select a filter ins
the family so that the lack of commutation between differe
tiation and filtering can be neglected.

A general formulation of the commutation error, due to
nonuniform filter and to the presence of boundaries, has b
proposed by Fureby and Tabor.3 Boundary domain terms ar
explicitly formulated inside this representation. A detail
numerical analysis of the field distribution of the intensity
the noncommutation terms is given in this paper by comp
ing LES and direct numerical simulation~DNS! data ob-
tained from simulations of the incompressible turbule
channel flow at Ret5180 and 395. It has been found that th
local intensity can be as high as 21% of the local advecti
with a field volume averaged relative intensity of about 8
Lower values apply if reference is made to the sum of
6 © 2003 American Institute of Physics
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1927Phys. Fluids, Vol. 15, No. 7, July 2003 Variable scale filtered Navier–Stokes equations
local advection, pressure gradient, and molecular visc
flux terms. An interesting result is that the use of differe
subgrid scale models negligibly affects the local and aver
values of the sum of the commutation error terms. As
pected, the high relative intensities of the commutation te
are concentrated in the flow regions where the gradientd
is high. However, the question of the possible extension
the effects on the macroscopic scale of the flow is still l
open.

A generalization of the procedures proposed by Gho
and Moin and van der Ven is presented in the paper by V
lyev et al.4 A minimization of the commutation error i
achieved by using a class of filters withn21 vanishing mo-
ments, wheren is the order of the employed numerical di
cretization scheme. The authors also supply a group of r
to construct discrete filters that commute with differentiati
up to any given order inside complex domains.

The method here proposed relies on an approximatio
the specific noncommutation term that corresponds to
different terms of the motion equations. A commutation a
proximation of the fourth order in the filter width can b
obtained thanks to the introduction of successive levels
average. See Sec. II for the basic formulation relevant to
isotropic grid stretching and the Appendix for the more ge
eral anisotropic case, which also specifies the formula
that is appropriate to wall-bounded flows.

While performing large eddy simulations, the present
proach can conveniently be used together with subgrid m
els based on analog multilevel filtering, e.g., models wh
apply the dynamic procedure, Germanoet al. ~1991!,7 Ger-
mano~1992!,8 or the Bardina mixed model~1980!.9 The fil-
tering approach we use in this paper is that of the very f
damental volume average, first applied by Smagorinsky
1963.10 The volume average formulation is advantageous
cause it does not introduce an error associated to dom
boundaries, thus avoiding the problem of the addition of f
ther noncommutation terms in the equations.

The variable scale filtered Navier–Stokes equations,
cluding the commutation terms approximation, are given
Sec. II.

A priori tests on the turbulent channel flow databases
Alfonsi et al. ~1998!11 and Passoniet al. ~1999!,12 Ret

5180, and by Moseret al. ~1999!,13 Ret5590, are presented
in Sec. III A. An example of application of the numeric
procedure is presented in Sec. III B, which focuses atten
on the fact that this systematic error is important through
the entire flow and not only in the regions where the non
mogeneous terms of the motion equation, which origin
from the lack of commutation of the operations of differe
tiation and filtering, are different from zero. The capacity
the present procedure to reduce the relevant absolute
relative errors is shown.

Before proceeding to the other sections, it is necessar
open a digression on the terminology adopted in what
lows. Since, among the points being discussed in the pa
there are: the structure of the motion equation, once a v
able scale filtering is used, and the role played by the te
which originate from the noncommutation filte
differentiation, we have had to clearly distinguish the co
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
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cept of commutation error on the flow solution from that
noncommutation term in the equations. Bycommutation er-
ror we mean the error which affects the flow solution, wh
a variable scale filter is used, but the equations are used
the operations of filtering and differentiation commute. B
noncommutation termwe mean any of the terms which orig
nate in the equation of motion when the filter scale is
function of the point. It is necessary to recall that in previo
literature the latter was called commutation error, since
equations were always used as if they were commutative
the omission of the terms, which should make them comp
when the filter length varies, introduced the error in the
lution.

II. NONCOMMUTATION TERMS AND THEIR
APPROXIMATION

The loss of the commutation between the spatial filter
and the differentiation operations is related to the use o
variable filter, which in the more general configuration
anisotropic. In this case the filter width is the vectord(x)
5(d1(x),d2(x),d3(x)).

For reading convenience and as the isotropic stretch
configuration is conceptually nonreductive, a scalar fil
scaled~x! is assumed in what follows. However, the gene
anisotropic configuration of stretching is dealt with in th
Appendix, which also specifies a filtering formulation that
suitable for wall-bounded flows.

Let us suppose we have chosen a given class of inte
tion volumes

Vd5$hPR3:ihi,d%

and an average operation for the variablef (x):

^ f &d5
1

Vd
E

Vd

f ~x1h!dh5
1

V1
E

V1

f ~x1dj!dj, ~1!

where the transformationj5h/d has been used and, as
consequence,V15Vd /d3. Please note that, with this choice
the width of the averaging volumes is twice the filter sca

A variable filter scale is introduced by allowingd to be a
function of point,d5d(x). In this case,

]

]xi
^ f &d5

]

]xi
F 1

V1
E

V1

f ~x1d~x!j!djG
5^“ f "di&d1

]d

]xi
~x!^“ f "j&. ~2!

By virtue of the fact that

]

]d
^ f &d5

]

]d F 1

V1
E

V1

] f

]xj
~x1d~x!j!djG

5
1

V1
E

V1

“ f "j dj, ~3!

recalling that̂ “ f "di&d5^] f /]xi&d , it results that the filter of
the derivative is a differential operator acting on the filter
field:
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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K ] f

]xi
L

d

5
]

]xi
^ f &d2

]d

]xi

]

]d
^ f &d . ~4!

The noncommutation termCi8 , which is defined as

Ci8~^ f &d!5 K ] f

]xi
L

d

2
]

]xi
^ f &d , ~5!

can be represented through~4! by the product of the filter
space derivative and the filter derivative of the filtered va
able:

Ci8~^ f &d!52
]d

]xi

]

]d
^ f &d . ~6!

The here proposed method is based on an approxima
of relation~6!. The problem could be faced adopting a tru
cated series expansion of^ f &d in terms of powers ofd ~Gho-
sal and Moin, 1995!.1 However, this would increase the ord
of the equations, and thus require additional boundary c
ditions. Here a numerical approximation of thed first deriva-
tive is used in conjunction with truncatedd expansions. Let
us write the second-order finite difference approximation

]^ f &d

]d
5

1

2h
~^ f &d1h2^ f &d2h!1O~h2!. ~7!

Choosingh5d,

]^ f &d

]d
5

1

2d
~^ f &2d2^ f &0!1O~d2!. ~8!

Now, the problem to face is that of the approximation
^ f &05 f and ^ f &2d in terms of relevant averaged quantitie
Using a Taylor expansion of the integrating function in~1!,
we obtain the following expression for^ f &d , in terms off,
and the filter width:

^ f &d~x!5 f ~x!1
1

2
a1,0,0¹

2f ~x!d21
1

4!
@a2,0,0~]1

41]2
4

1]3
4! f ~x!16a1,1,0~]1

2]2
21]1

2]3
2

1]2
2]3

2! f ~x!#d41O~d6!

5 f ~x!1F1@ f #d21F2@ f #d41O~d6!, ~9!

where coefficientsai jk are defined as

ai jk5
1

V1
E

V1

j1
2ij2

2 jj3
2kdj, ~10!

and the operatorsF1 , F2 as

F1@•#5 1
2a1,0,0¹

2, ~11!

F2@•#5
1

4!
@a2,0,0~]1

41]2
41]3

4!•16a1,1,0~]1
2]2

21]1
2]3

2

1]2
2]3

2!•#. ~12!

From ~9! it follows that

f 5^ f &d2F1@ f #d21O~d4! ~13!

and then, averaging~13! on a volume of linear dimension 2d,

^ f &2d5^^ f &d&2d2^F1@ f #d2&2d1O~d4!. ~14!
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
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However, from~9! it can be observed that

^F1@ f #d2&2d5F1@ f #d214F1@F1@ f #d2#d21¯

5d2F1@ f #1O~d4!,

so that

^ f &2d5^^ f &d&2d2F1@ f #d21O~d4!. ~15!

When the expressions~13! for f and~15! for ^ f &2d are intro-
duced into~8!, one obtains

]^ f &d

]d
5

1

2d
~^^ f &d&2d2^ f &d!1O~d2!. ~16!

When using~16!, the noncommutation termCi8 @see~6!# can
be approximated by

C̄i8~^ f &d!52
]d

]xi

1

2d
~^^ f &d&2d2^ f &d!, ~17!

which implies

Ci8~^ f &d!5 C̄i8~^ f &d!1
]d

]xi
O~d2!. ~18!

In order to analyze the approximation error (] id)O(d2)
and give a true estimate of it, let us write

d~x!5Dw~x!, ~19!

where D is a reference value of the filter width which
usually associated with the portion of the domain where c
ditions of near homogeneity of the flow hold. Functionw~x!
is a positive nondimensional function which belongs to t
interval @dmin /D,1#, in the homogeneous region of the flo
w~x! is constant and equal to 1. Functionw(x) varies in the
inhomogeneous regions, though it keeps values that
greater thandmin /D, which is a value that must correspon
~i!—when the local scale invariance may be supposed—
convenient minimum value of the filter width still inside th
inertial range, and~ii !—when the local scale invariance doe
not hold—to a scale of the order of the scale which char
terizes the local turbulence structure, as, in case of w
flows, is the scale of the quasistreamwise vortices peculia
the viscous sublayer~see Moin and Kim, 1982,14 and Ghosal,
19995!.

Introducing~19! and ]d5D21]w into ~6! and deducing
the d derivative from expansion~9!, written up to the fourth
order of accuracy, the noncommutation term can be e
mated,

Ci8~^ f &d!52
]w

]xi

]

]w
^ f &Dw

522
]w

]xi
w~x!~F1@ f #D2

12w2~x!F2@ f #D41O~D6!!. ~20!

Using expansion~9! twice, after having inserted~19!, ap-
proximation~17! can be estimated as

C̃i8~^ f &d!522
]w

]xi
w~x!~F1@ f #D21~4w2~x!F2@ f #

1F1@w2F1@ f ## !D41O~D6!!. ~21!
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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To keep the validity of estimates~20! and~21!, care must be
taken to select a functionw~x! which, in the region of filter
variation, also possesses first and second derivative
O(1). Possible examples are transcendental functions s
as arctan(xi), tanh(xi).

A comparison of~20! and ~21! yields

Ci8~^ f &d!2 C̃i8~^ f &d!'O~D4!. ~22!

Consequently, when~17! is used, a fourth-order noncom
mutation term in~4! is produced instead of the second-ord
error, which would be obtained by totally neglecting the la
of commutation.1 Introducing a finite difference approxima
tion of a higher order than~7!, and, consequently, furthe
levels of average, it could be possible to increase the a
racy of the approximation of the noncommutation term, le
ing to a higher order error in~22!.

This analysis pertains to differential operators of the fi
order. The analysis is similar for the second-order differen
operators. The structure of the correction terms remains
same and to reach the fourth order of accuracy the s
number of levels of average must be maintained. The
proximation of the noncommutation term now includes t
filter of the variable spatial first derivatives.

The noncommutation term of the second derivatives,
ing defined by

Ci i9 ~^ f &d!5K ]2f

]xi
2L 2

]2

]xi
2 ^ f &d , ~23!

can be obtained by taking the derivative of the first deri
tive ~2! as

Ci i9 ~^ f &d!52
]2d

]xi
2

1

V1
E

V1
(
j 51

3

j j

] f

]xj
~x1dj!dj

22
]d

]xi

1

V1
E

V1
(
j 51

3

j j

]2f

]xj]xi
~x1dj!dj

2S ]d

]xi
D 2 1

V1
E

V1
(

j ,k51

3

j jjk

]2f

]xj]xk
~x1dj!dj,

~24!

that is,

Ci i9 ~^ f &d!52
]2d

]xi
2

]

]d
^ f &d22

]d

]xi
S ]2

]d]xi
^ f &dD

2S ]d

]xi
D 2 ]2

]d2
^ f &d ~25!

and can consequently be approximated using the finite
ference for thed derivatives, as performed for the noncom
mutation term of the first derivatives. The use of the stand
three-point formula for the second derivative of^ f &d with
respect tod and of relation~16! for ]dxi

2 ^ f &d @the second term

on the right-hand side of Eq.~25!# yields
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C̃i i9 ~^ f &d!52
] id~x!

d~x!
@^] i^ f &d&2d2] i^ f &d#

2
~] id~x!!21d~x!] i

2d~x!

2d2~x!
@^^ f &d&2d2^ f &d#,

~26!

whose order of accuracy can be determined by again u
the transformationd~x!5w~x!D. If the expansions of the non
commutation termsC9 are compared with its approximatio
C̃9, it is seen that, also in this case, the error isO(D4).

Even if the present analysis is based on the use of
volume averages, it can be observed that it remains vali
the case where a more general kind of filtering is adopted
weight functiong(j), introduced in~1!, only modifies the
coefficientsai jk @Eq. ~10!#, which should now be defined a

ai jk5E g~j!j1
2ij2

2 jj3
2kdj.

However, the noncommutation term~6! and its approxima-
tion remain unchanged, provided the weight function ha
compact support. It is always possible to choosed~x!, so that
the actual integration domain of the filter lies inside the flo
domain @for instance, setting a value that is lower than t
distance from the wall of the first layer of grid points for th
minimum of d~x!#. In this way, the compactness of the su
port prevents the error linked to the presence of fin
boundaries.3

It should be noted that this procedure operates in
physical space and does not rely on the use of a map
function of the nonuniform grid. Centered volumes of av
age have been adopted@see Eq.~1!#, even though they are
not strictly necessary as far as the average process is co
ered. However, this choice shows two advantages:~i! physi-
cally, when the flow is incompressible, the center of the v
ume of average is also the center of gravity and thus
point of application of the average momentum,~ii ! analyti-
cally, it allows a compact and second order inD representa-
tion of the noncommutations terms, which in turn are a
proximated by the present procedure with an accuracy of
fourth order. The choice of a noncentered volume of av
ages, which, in principle, is mathematically feasible, yield
first order inD representation of the noncommutation term
which would also lead to a much more cumbersome ana
cal structure.1,6

Noncommutation terms in the averaged
incompressible Navier–Stokes equations

Let us consider the incompressible Navier–Stokes eq
tions written in the form

] iui50, ~27!

] tui1] j~uiuj !1] i p2n] j j
2 ui50. ~28!

If a filter operator is applied the system becomes

^] iui&d50, ~29!

^] tui&d1^] j~uiuj !&d1^] i p&d2n^] j j
2 ui&d50. ~30!
cense or copyright; see http://pof.aip.org/about/rights_and_permissions



n
n

is
in
ll

.
th

m
n
ed

ot
re

e
in
oc
rm
o
th

ent
-

of
ce-
rid

by

tion

e of
the
ms,
ady

Fur-
the

ions

f a
ed
ed
he
ing
on
all
and
ic
ll
ics

on-
ich
ce
ir
the
ous
m-
bu-

t
n-

ugh
an

h
-

ra-
se.
mu-

1930 Phys. Fluids, Vol. 15, No. 7, July 2003 M. Iovieno and D. Tordella
When d, the linear scale of filtering~see for instance the
definition proposed in Sec. II! is not uniform in the flow
domain, the averaging and differentiation operations
longer commute. By introducing the subgrid turbule
stressesRi j

(d)5^ui&d^uj&d2^uiuj&d and the noncommutation
terms Ci8 , Ci i9 , for the first and second derivatives, as d
cussed in Sec. II for the isotropic filter configuration and
the Appendix for the general anisotropic and the wa
bounded flow configuration@see the isotropic relations~5!,
~6!, ~23!, and ~25!; the anisotropic relations~A5!–~A6!,
~A18!, ~A11!, ~A20!; the wall anisotropy relations~A17!,
~A21!#, the averaged equations are written as

] i^ui&d52Ci8~^ui&d!, ~31!

] t^ui&d1] j~^ui&d^uj&d!1] i^p&d2n] j j
2 ^ui&d2] jRi j

~d!

52Cj8~^ui&d^uj&d!2Ci8~^p&d!1nCj j9 ~^ui&d!1Cj8~Ri j
~d!!.

~32!

Together with what has been explained in detail in Sec
@see~17! and ~26!# the present procedure approximates
noncommutation term on the right-hand side of~31! and~32!
with an accuracy of the fourth order. The correction ter
can thus be represented by the following group of relatio
which are determined from the field information obtain
through two successive average levels~the second being
computed over a linear scale 2d!:

C̃i8~^ui&d!52
] id~x!

2d~x!
@^^ui&d&2d2^ui&d#, ~33!

C̃j8~^ui&d^uj&d!52
] jd~x!

2d~x!
@^^ui&d^uj&d&2d2^ui&d^uj&d#,

~34!

C̃i8~^p&d!52
] id~x!

2d~x!
@^^p&d&2d2^p&d#, ~35!

C̃j j9 ~^ui&d!52(
j 51

3 H ] jd~x!

2d~x!
@^] j^ui&d&2d2] j^ui&d#

1
~] jd~x!!21d~x!] j

2d~x!

2d2~x!
@^^ui&d&2d2^ui&d#J ,

~36!

C̃j8~Ri j
~d!!52

] jd~x!

2d~x!
@^Ri j

~d!&2d2Ri j
~d!#, ~37!

which must be accordingly modified in the case of anis
ropy of the stretching of the computational grid, see the p
vious comments and the Appendix@~A11!–~A12!, ~A16!–
~A17!, and~A20!–~A21!#.

The adoption of the volume average allows the filter
variables to be fully supported inside the physical doma
As a consequence, a peculiar property of the present pr
dure is that there is an absence of noncommutation te
associated with a finite or semi-infinite computational d
main in the filtered equations. Such terms arise when
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filtering operator requires the extension of the depend
variables beyond the rim of the domain@see Fureby and Ta
bor ~1997!3#.

It can be observed that the use of the double level
average highlights the convenience of coupling this pro
dure to subgrid models which also employ it. These subg
models are the mixed model by Bardinaet al. ~1980!9 and, in
general, all models that apply the dynamical procedure
Germanoet al. ~1991!7 and Germano~1992!.8

The filtered equations~29! and ~30! are invariant under
Galilean transformations. Under transformationt8→t, x8
→x1ct, a spatial variation of the filter scaled(x), in thex,
t reference system, becomes a spatio-temporal varia
d(x)5d(x82ct8)5d(x8,t8) in the x8, t8 system. The tem-
poral dependence of the filter scale yields to the presenc
a noncommutation term, which is also associated with
nonstationary term. The transformed noncommutation ter
and the relevant approximations, released by the unste
and the convective terms, however, cancel each other.
thermore, the terms obtained from the divergence of
stress tensor in a system like~31! and ~32! and the corre-
sponding approximations~35!–~37! are all Galilean invari-
ants, which assures that the variable scale filtered equat
and their approximations are also such.

Another general implication, linked to the presence o
finite domain, is that the boundary conditions for the filter
variables should be different from those for the unfilter
variables. The problem of wall boundary conditions for t
filtered field could be treated with this procedure by adopt
one of the classical approximated conditions, which rely
the introduction of a special subgrid model, that is, the w
model, which is apt to represent the inner layer dynamics
which puts the first grid point inside the logarithm
layer.15–18It could also be treated by placing grid points we
inside the viscous sublayer to resolve the near-wall dynam
and by assuming no slip and impermeability boundary c
ditions. It should be recalled that the latter conditions, wh
in theory should not be used for filtered velocities, introdu
an error ofO(D2), independently of the filter shape. The
use requires the subgrid model, which should represent
nonhomogeneous and anisotropic structure of the visc
and buffer layers, to be altered in the inner region. The e
ployment of anisotropic models based on a tensorial tur
lent viscosity would be opportune, see Horiuti~1990!,19 Ca-
rati and Cabot~1996!,20 the review monography by Sagau
~2001, Chap. 5.3!6 and also the differential angular mome
tum model ~Iovieno and Tordella, 2002!,21 which, being
based on the representation of the turbulent viscosity thro
the moment of momentum vector, is well suited to assume
anisotropic formulation.

III. NUMERICAL TESTS

A. A priori tests on the turbulent channel flow

In this section a set ofa priori tests is presented, whic
provides information on the field distribution of the noncom
mutation terms, their relevant approximations, and their
tios with respect to the physical terms from which they ari
The data correlating the approximated and exact noncom
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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tation terms have been determined by filtering the direct
merical simulation of the turbulent plane channel flow
Ret5180, as performed by Alfonsiet al. ~1998!11 and Pas-
soniet al. ~1999!,12 and at Ret5590, as performed by Mose
et al. ~1999!.13 The longitudinal momentum balance, whic
implies a zero pressure noncommutation term, is conside
Repetition on two different grid levels has been perform
All the data here presented have been averaged over a
terval of 1.2 revolution times.

Figure 1 shows the distributions of the exact noncomm
tation terms and of their approximation according to t
present procedure, at two filtering levels. The convect
term of the longitudinal momentum balance, its grid and s
grid scale decomposition, and the diffusive term are sho
in parts ~a!, ~b! and ~c!, respectively. The filterd(x)
5(Dx,w(y)Dy,Dz), with constantsDx, Dy andDz, varies
along the transversal nondimensionaly direction according
to w(y), wherew(y)P@0,1#, andyP@21,1# is a function of
at least classC2. The variation ofw(y) has been laterally
arranged~in 20% of the channel width along the walls! as
follows:

w~y!5
tanha~y11!tanha~12y!

tanh2 a
, a54, ~38!

where a is the parameter that controls the gradient of
filter scale at the wall. The noncommutation terms on
first and second derivatives have been determined for s
an anisotropic structure of the filter through the use of re
tions ~A17! and~A21!. The data in Figs. 1~a! and 1~c! show
that the present procedure yields, on average, for the R
nolds stress,

uC8uD
uC8u2D

50.26,
uC82 C̃8uD
uC82 C̃8u2D

50.13,

uC82 C̃8uD
uC8uD

50.09,
uC82 C̃8u2D

uC8u2D
50.18,

and for the viscous stress,

uC9uD
uC9u2D

50.25,
uC92 C̃9uD
uC92 C̃9u2D

50.17,

uC92 C̃9uD
uC9uD

50.10,
uC92 C̃9u2D

uC9u2D
50.15,

whereD54.9231022.
These figures have been obtained by neglecting the

that belong to the first 5% near the wall, where the numer
uncertainty due to the spatial discretization is high
especially as regards the exact noncommutation te
computations—and where these results deteriorate by ne
25%.

The results of the numerical test at Ret5590 compared
to those at Ret5180, see Fig. 1~a!, show a good invariance
of the accuracy of the procedure with respect to the va
tions of the flow control parameter.

It should be remarked that a procedure which is capa
of predicting at least 90% of the value of the noncommu
tion terms, using the rather large value ofd54.9231022,
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can be considered accurate. The analysis of numerical e
in the LES of turbulence with cutoff in the inertial rang
~errors due to spatial discretization: finite-differencing erro
and aliasing errors! in fact shows thatthe resulting errors are
very large, of the same order and even larger than the m

FIG. 1. ~a! ~—! Average values of the exact noncommutation convect
term and~---! correspondent average values predicted by the procedure~b!
Noncommutation approximated terms for the resolved Reynolds stre
~-•-! and for the subgrid scale stresses~---!. ~c! ~—! Average values of the
noncommutation diffusive term and~---! correspondent values predicted b
the procedure.
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nitude of the subgrid term over most of the wavenum
interval, for finite difference schemes up to eighth-order
curate, irrespective of the grid resolution~cf. Ghosal, 1996,
pp. 201–202!.22 In such a general situation, it may be co
sidered a success that the procedure is capable of predi
nine-tenths of the value of the noncommutation terms. T
relevant average error cannot spoil the overall numerical
liability of the simulations since it is about one order
magnitude lower than the errors due to the spatial discret
tion.

A warning is necessary regarding the numerical com
tation of the exact values of the noncommutation terms.
rect computation through the definition is not recommend
as, even with the implementation of a numerical different
tion of the sixth order of accuracy, it artificially amplifies th
fluctuations that are naturally present in the data field. T
exact values of the noncommutation terms should be
rectly evaluated by using the integral representation of
derivatives]/]d or ]/]d j , such as~3! in Sec. II or~A3! in the
Appendix. No such numerical problems affect the compu
tion of the approximated noncommutation terms.

Figure 2 provides information on the relative importan
of the exact noncommutation terms with respect to the ph
cal terms which causes them. In part~a! the average ratio
uCy8(^uv&)/]y(^uv&)u has been plotted forD54.9231022,
D59.8431022, and for a doubling of the wall value of th
stretching factora5]yw58. It can be seen, that close to th
point where the Reynolds stress reaches its maximumy1

'30), and the divergence therefore takes in the average
small values, ratio values as high as 0.38 are reached
the coarser grid. The comparison of these results with
results of Fig. 1~b! indicates that the average exact value
the convection noncommutation term is of the same orde
the average divergence of the subgrid stresses. Furtherm
it is interesting to observe that the doubling of the stretch
factora increases the relevance of the noncommutation te
in this region nearly as much as the doubling of the g
coarsening does, see in Fig. 2~a! the near wall region where
y1<14. Figure 2~a! also shows a positive comparison of th
field integral value ofuCy8(^uv&)/] j (^uuj&)u given by Fureby
and Tabor3 with the distribution of the same ratio that ha
been yielded by the database used here.11,12

With respect to the average ratiouCyy9 (^u&)/]yy
2 (^u&)u,

Fig. 2~b! yields maxima local values of about 100% for th
coarser resolution, and about 60% for the finer one, clos
where the relevant noncommutation terms reach their lo
maxima near to the wall. Leaving aside local maximum v
ues detached from the wall and relevant to the coarser r
lution, this ratio, in the central part of the field, settles
constant lower values close to 0.260.1.

B. Commutation error on an analytical solution

As seen in Sec. II, there are four types of noncommu
tion terms in the variable scale filtered incompressi
Navier–Stokes equations~31!, ~32!, which are all source
terms. If one limits the analysis of their influence on the flo
solution to the determination of the field distribution of th
values they take with regards to the values taken by the o
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nal terms of the equations, one would mainly find the fo
seen result that the noncommutation terms are not neglig
where the gradient of the filter scale is high. However, this
not sufficient to understand the way, localized rather th
extended, in which the commutation error affects the fl
solution.

For this purpose, here it has been considered usefu
study the behavior of an extremely simple flow model, a s
of conceptual model, which has two characteristics:—j
one type of commutation source term is present—its ex
filtered solution, that is, the variable scale filtered soluti
not affected by the commutation error, is known and th
could be used as the reference solution. The second cha
teristics can only be obtained by filtering the exact solut
of the unfiltered equation of the motion.

On the other hand, to prove the efficiency of any giv
procedure for the correction of the commutation error, it
also necessary to know the exact filtered solution of a
flow, which, in turn, requires knowledge of the exact flo
unfiltered solution.

Such a reference state cannot be found in a turbu

FIG. 2. Average of the absolute value of the ratio between the exact n
commutation terms and the physical correspondent terms in the mo
equation.~a! Convection,~—! uCy8(^uv&)/] j (^uuj&)u, ~b! diffusion.
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configuration of flow, for which no exact solution is ava
able. Reference is therefore made to a laminar flow, wh
has an exact solution. One should note that, in such a c
the filtered equation of the motion, when the filter length i
function of the point but the commutation error correction
not considered, is identical to the unfiltered equation.

The steady laminar incompressible channel flow h
been selected as the test flow, since it has only one com
tation term, the diffusion one, see~36!, and its solution is
analytically known.

The nondimensional momentum equation for the ste
incompressible channel flow is written as

]y
2u5Re]xp52

~Gr!1/2d3/2

m
, ;yP~0,1!, ~39!

whereG is the modulus of the dimensional longitudinal pre
sure gradient and the adimensionalization is based on
channel widthd, the gradientG, and the densityr ~the non-
dimensional pressure gradient]xp results equal to21!. The
boundary conditions are

u~0!50, u~1!50. ~40!

The corresponding filtered equation is

]y
2^u&d~y!1Re52C9~^u&d!, ;yP~0,1!, ~41!

whereC9(^u&d) is set to zero to determine the solution whi
neglects the commutation error and whereC9(^u&d) is ap-
proximated by

C̃9~^u&d!52
d8~y!

d~y!
@^^u&d8&2d2^u&d8#

2
d8~y!21d~y!d9~y!

2d2~y!
@^^u&d&2d2^u&d#

~42!

to determine the solution which accounts for the commu
tion error with the present procedure. The numerical solut
of Eq. ~41! is determined by solving the corresponding u
steady filtered equation

] t^u&d2
1

Re
]y

2^u&d511
1

Re
C̃9~^u&d!, ;yP~0,1!

~43!

through a fourth-order Runge–Kutta time integrati
scheme—carried out until the steady state is reache
coupled to a fourth-order finite-difference discretization
the domain. The double level of average has been comp
using a third-order Hermitian quadrature formula.

The filter of the exact solution gives the velocity dist
bution

^u&exact5
Re

2 Fy~12y!2
1

3
d2~y!G ,

which constitutes the reference on which the contrast
tween the commutation corrected filtered solution and
noncorrected filtered solution is based. The filter scale va
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along the transversal direction according tod(y)5w(y)D,
where w(y)P@0,1#, with D50.1, is a function of at leas
classC2. The variation ofw(y),

w~y!5
tanh 2ay tanh 2a~12y!

tanh2 a
, ~44!

has been laterally arranged in 20% of the channel wi
along the wall, setting the parametera54, see Fig. 3.

By contrasting the filtered exact solution, the absolu
and relative errors relevant to the corrected and noncorre
solutions are compared in Fig. 4. The corresponding e
recovery, with the wall distance, is also shown in Figs. 2 a
3. It can be seen that the present procedure greatly red
the commutation errors: in the central part of the flow,
almost full recovery is obtained.

FIG. 3. ~—! Filter scale across the channel@d5w(y)D, a58, see~44!, Sec.
III B #; ~---! local values of the commutation termC̃9, see~42!, referring to
the diffusion term;~-•-! R5Er /Er max, relative commutation error for the
solution of the filtered noncorrected equation~C950! normalized with re-
spect to the field peak value,Er5@(^u&2^u&exact)/^u&exact#.

FIG. 4. Absolute Ea5(8/Re)(̂u&2^u&exact) ~—! and relative Er5@(^u&
2^u&exact)/^u&exact# ~---! error distributions of the filtered velocity distribu
tions: A—without the commutation correction,B—with the commutation
correction. Curve~-•-!: error recovery (Ea(A)2Ea(B))/Ea(A) with the dis-
tance from the wall. The exact filtered velocity reference distribution

^u&exact5(Re/2)@y(12y)2
1
3d2(y)#.
cense or copyright; see http://pof.aip.org/about/rights_and_permissions



ue
io
to
th
th
io
tio
is

io
er
to
th

e
x

in
i
o

e
re
o
an
p
th
n
h

di-
n
io
h
ug
gr
o

S
ha
a
n
th
on
b
xi

o
th

o
de
es
rm
th
d
t

u-
he

u-
he
w,
stant
his
—
ce
nt
tion
to

ed
al

he
the
ut
ent
r of

for
nel

ch-

f

1934 Phys. Fluids, Vol. 15, No. 7, July 2003 M. Iovieno and D. Tordella
For a comparison of the distributions of the local val
of the noncommutation term and of the relative commutat
error on the solution, see again Fig. 3. It is important
observe that, by neglecting the commutation correction,
field results are affected by a systematic error not only in
region where the filter length varies, but also in the reg
where it is constant. This behavior is due to the accumula
of errors on the velocity variable and its derivative, which
due to the lack of the two diffusion addenda@see~41! and
~42!# that should enter the momentum balance equat
Even though these terms are significantly different from z
in a limited portion of the flow they affect the entire field
a great extent. In the central part of the flow, where
noncommutation term is very small~Fig. 3!, the relative
commutation error results to be of the same order as the p
value of the field, while the absolute error reaches its ma
mum value~see again Fig. 4!.

IV. CONCLUSIONS

A procedure to explicitly insert the correction terms
order to counteract the commutation error associated w
the use of a variable filter scale in the filtered equations
motion is here presented. With this procedure it is possibl
directly compensate for the commutation error on the filte
field. The procedure uses volume average filtering, but m
general filter operators are also possible. Both isotropic
fully anisotropic filtering configurations are considered. A
proximated commutation terms, with an accuracy of
fourth order in the filter width, are inserted into the motio
equations, which do not increase their differential order. T
difficulties related to the addition of further boundary con
tions are therefore avoided. The proposed representatio
the commutator operators is based on truncated expans
in the filter width of finite difference approximations, whic
make use of a multilevel average operation. This fact s
gests the joint use of the present procedure with sub
models which need an explicit filtering of the equations
motion, such as dynamic and mixed models.

A set of a priori tests, with a plane channel flow DN
(Ret5180) as a test field, proves the good correlation t
the present procedure yields between the approximate
‘‘exact’’ noncommutation terms. It also provide informatio
on the relative importance of these terms with respect to
original physical terms. The influence of the field resoluti
on the general noncommutation term is confirmed to
O(D2). Asymptotically, the accuracy of the present appro
mation is expected to beO(D4). At the resolution levels
corresponding to Ret5180, these tests show a reduction
the absolute errors, after halfing the reference filter scale,
is nearlyO(D3).

The filtering is a mathematical operation, which is n
specific to the Navier–Stokes equations and is indepen
of the solution typology. When it is varied, the filter caus
one kind of noncommutation term for each differential te
present in the equations of the motion. A test, for which
analytically exact~unfiltered and as a consequence filtere!
solution is available, has been considered to overcome
limitation of an analysis, based on thea posterioridetermi-
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
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nation of the relative order of magnitude of the noncomm
tation terms, with regard to the original physical terms of t
motion equations, and to analyze the effects of the comm
tation error on a flow solution. The chosen test flow is t
two-dimensional incompressible laminar channel flo
whose dynamics consist of the balance between the con
longitudinal pressure force and the viscous diffusion. In t
case, only one type of commutation source term
diffusion—is present, and this is only of relative importan
in the lateral part of the flow, according to the filter gradie
dependence. The error, due to the lack of a noncommuta
term in the motion equation, is however also transferred
the central part of the flow. The result is a biased filter
velocity distribution where the relative error in the centr
part of the flow, where the filter gradient is zero, is of t
same order of magnitude as the local maximum error of
field, which is situated at a distance from the wall of abo
15% of the channel width. It has been shown that the pres
procedure can reduce the commutation error by one orde
magnitude in the central part of the field.
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APPENDIX: NONCOMMUTATION APPROXIMATION
FOR ANISOTROPIC FILTERS

When the geometry of the flow domain requires stret
ing each direction independently, which impliesd(x)
5(d1(x),d2(x),d3(x)), it is opportune to adopt a class o
integration volumes of the kind

Vd5H hPR3: I S h1

d1
,
h2

d2
,
h3

d3
D I,1J ~A1!

and an average operation for the variablef (x)5 f (xj

1d jj j ):

^ f &d5
1

Vd
E

Vd

f ~x1h!dh5
1

V1
E

V1

f ~xj1d jj j !dj, ~A2!

where 15~1,1,1!, the transformationh j5d jj j ~with det
(]h i /]jk)5d1d2d3) has been introduced and thusV1
5Vd /d1d2d3 .

In such a situation, by virtue of the fact that

]

]dk
^ f &d5

]

]dk
F 1

V1
E

V1

f ~xj1d j~x!j j !djG
5(

j 51

3
1

V1
E

V1

] f

]xj
~xj1d j~x!j j !

]

]dk
~xj1d j~x!j j !dj

5
1

V1
E

V1

jk

] f

]xk
dj, ~A3!

it is obtained
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]

]xi
^ f &d5

]

]xi
F 1

V1
E

V1

f ~xj1d j~x!j j !djG5(
j 51

3
1

V1
E

V1

] f

]xj
~xj1d j~x!j j !

]

]xi
~xj1d j~x!j j !dj

5(
j 51

3
1

V1
E

V1
Fd j i

K ] f

]xj
1

]d j

]xi
j j

] f

]xj
Gdj5

1

V1
E

V1

] f

]xi
dj1(

j 51

3
]d j

]xi

1

V1
E

V1

] f

]xj
j jdj5 K ] f

]xi
L

d

1(
j 51

3
]d j

]xi

]^ f &d

]d j
,

is

-
o

i
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on
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e
iti

u-

u-
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be
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whered j i
K is the Kronecker unit tensor.

As in Sec. II@see relation~4!#, for the isotropic configu-
ration, it results that the anisotropic filter of the derivative
a differential operator that acts on the filtered field:

K ] f

]xi
L

d

5
]

]xi
^ f &d2(

j 51

3
]d j

]xi

]

]d j
^ f &d . ~A4!

The anisotropic noncommutation termCi8 , which is defined
as

Ci8~^ f &d!5 K ] f

]xi
L

d

2
]

]xi
^ f &d , ~A5!

can now be represented through~A4! as the sum of the prod
ucts of the filter space derivatives and the filter derivatives
the filtered variable:

Ci8~^ f &d!52(
j 51

3
]d j

]xi

]

]d j
^ f &d . ~A6!

Proceeding in strict analogy with what has been done
Sec. II, the anisotropic noncommutation term can be
proximated through second-order centered finite differen

C̃i8~^ f &d!52(
j 51

3
]d j

]xi

1

2d j
~^ f &d1d jej

2^ f &d2d jej
!1O~d j

2!.

~A7!

Again, using a Taylor expansion of the integrating functi
in ~A2!, where only even derivatives appear since the
main of integration~A1! is symmetric with respect to all th
integration variables, expressions are obtained for quant
such as^ f &d and ^ f &d6d jej

, in terms of f, and the filter
width—which is now defined asd j5Dw j (x), ; j , whereD
is a reference value forudu and 0<w j (x)<1, ; j , x:

f ~x!5^ f &d~x!2
1

2
D2(

j 51

3

ajw j
2~x!

]2f

]xj
2 ~x!1O~D4!, ~A8!

where

aj5
1

V1
E

V1

j j
2dj

and

^ f &d6d jej
5^^ f &d~x!&d6d jej

2
D2

2 (
j 51

3

aj K w j
2~x!

]2f

]xj
2L

d6d jej

1O~D4! , ~A9!
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5^^ f &d~x!&d6d jej
2

D2

2 (
j 51

3

ajw j
2~x!

]2f

]xj
2

1O~D4!,

~A10!

since from~A8! ^g&d5g1O(D2), ;g.
The basic approximation for the anisotropic noncomm

tation termCi8 is derived through these expansions as

C̃i8~^ f &d!52(
j 51

3
]d j

]xi

1

2d j
~^^ f &d&d1d jej

2^^ f &d&d2d jej
! ,

~A11!

52(
j 51

3
]w j

]xi

1

2w j
~^^ f &d&d1d jej

2^^ f &d&d2d jej
!,

~A12!

while the accuracy of the anisotropic first derivative comm
tation error and its approximation can be verified to be

Ci8~^ f &d!5D2(
j 51

3

ajw j

]w j

]xi

]2f

]xi
2

1O~D4!, ~A13!

C̄i8~^ f &d!5Ci8~^ f &d!1O~D4!. ~A14!

By filtering only in thej direction, expansion~A8! becomes

^^ f &d&2d jej
5 f ~x!12D2w j

2~x!
]2f

]xj
2 ~x!1O~D4!,

which implies

^^ f &d&2d jej
2^ f &d5^^ f &d&d1d jej

2^^ f &d&d2d jej
1O~D4!,

and, though keeping the same order of accuracy, the equ
lent representation for both relations~A11! and ~A12! be-
comes

C̃i8~^ f &d!52(
j 51

3
]d j

]xi

1

2d j
~^^ f &d&2d jej

2^ f &d!, ~A15!

52(
j 51

3
]w j

]xi

1

2w j
~^^ f &d&2d jej

2^ f &d!. ~A16!

For flow fields where the domain grid needs to
stretched along only one direction, sayy and whose typical
examples are two dimensional wall-bounded flows, the
representation yields very simple approximation formul
By adopting the widely used notation d(x)
5(Dx,w(y)Dy,Dz) in such a case with constantsDx, Dy,
andDz, the anisotropic approximation for the first derivativ
noncommutation term results to be

C̃y8~^ f &d!52
]w

]y

1

2w~y!
~^^ f &d&2w~y!Dy2^ f &d!. ~A17!
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The anisotropic noncommutation term of the second der
tives, being defined by

Ci i9 ~^ f &d!5K ]2f

]xi
2L

d

2
]2

]xi
2 ^ f &d , ~A18!

can be obtained as in Sec. II@see~23!–~25!#

Ci i9 ~^ f &d!52(
j 51

3
]2d j

]xi
2

]

]d j
^ f &d

22(
j 51

3
]d j

]xi
S ]2

]d j]xi
^ f &dD

2 (
j ,k51

3 S ]d j

]xi

]dk

]xi
D ]2

]d j]dk
^ f &d . ~A19!

Before deriving the approximated form for~A19!, while
wishing to maintain its fourth order of accuracy, it is use
to observe that the terms on the right-hand side which c
tain (]2/]d j]dk)^ f &d , kÞ j , by ~A8!, are of the same orde
as the remainder term. Therefore, they do not enter the
proximation, which is

C̃i i9 ~^ f &d!52(
j 51

3 d j] i
2d j1~] jd j !

2

2d j
2 @^^ f &d&2d jej

2^ f &d#

2(
j 51

3
] id j

d j
@^] i^ f &d&2d jej

2] i^ f &d#. ~A20!

Again, in analogy with what has been done for the first d
rivatives, Eq.~A17!, the following is obtained:

C̃yy9 ~^ f &d!52
w]y

2w1~]yw!2

2w2~y!
@^^ f &d&2w~y!Dy2^ f &d#

2
]yw

w~y!
@^]y^ f &d&2w~y!Dy2]y^ f &d#. ~A21!
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