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Variable scale filtered Navier—Stokes equations: A new procedure
to deal with the associated commutation error
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10129 Torino, Italy

(Received 22 March 2002; accepted 25 March 2003; published 5 Jun¢ 2003

A simple procedure to approximate the noncommutation terms that arise whenever it is necessary to
use a variable scale filtering of the motion equations and to compensate directly the flow solutions
from the commutation error is here presented. Such a situation usually concerns large eddy
simulation of nonhomogeneous turbulent flows. The noncommutation of the average and
differentiation operations leads to nonhomogeneous terms in the motion equations, that act as source
terms of intensity which depend on the gradient of the filter séaad which, if neglected, induce

a systematic error throughout the solution. Here the different noncommutation terms of the motion
equation are determined as functions of #hegradient and of theS derivatives of the filtered
variables. It is shown here that approximated honcommutation terms of the fourth order of accuracy,
with respect to the filtering scale, can be obtained using series expansions in the filter width of
approximations based on finite differences and introducing successive levels of filtering, which
makes it suitable to use in conjunction with dynamic or mixed subgrid models. The procedure
operates in a way which is independent of the type of filter in use and without increasing the
differential order of the equations, which, on the contrary, would require additional boundary
conditions. It is not necessary to introduce a mapping function of the nonuniform grid in the
physical domain into a uniform grid in an infinite doma priori tests on the turbulent channel

flow (Re, 180 and 59Dhighlight the approximation capability of the present procedure. A numerical
example is given, which draws attention to the nonlocal effects on the solution due to the lack of
noncommutation terms in the motion equation and to the efficiency of the present procedure in
reducing the commutation error on the solution. 2003 American Institute of Physics.

[DOI: 10.1063/1.1577345

I. INTRODUCTION variables, in terms of the square of the filter width, which
however requires the solution of additional nonhomogeneous
The problem of the noncommutativity of the filtering perturbative problems.
operation has been considered by Ghosal and Ni995,* A family of one parameter filters commuting with differ-
van der Ven(1995,%> Fureby and Tabof1997, Vasilyev  entiation up to any given order in the filter width, which is
et al. (1998 and reviewed by Ghos&l999° and Sagaut in  assumed nonuniform in the integration domain, was con-
his monography on large eddy simulatidrES) for incom-  structed by van der Vehlf a discretization scheme of a
pressible flowg2002).° given order is adopted in a LES, one may select a filter inside
Ghosal and Moihshowed that the commutation error is the family so that the lack of commutation between differen-
of the second order in the filter width. Introducing a filter tiation and filtering can be neglected.
definition built on the mapping function of the nonuniform A general formulation of the commutation error, due to a
grid, they proposed a procedure that can be used whenevaonuniform filter and to the presence of boundaries, has been
numerical schemes based on pseudospectral methods or proposed by Fureby and TabbBoundary domain terms are
finite differencing of an order higher than the second ordeexplicitly formulated inside this representation. A detailed
are employed. The noncommutation terms are expanded inrumerical analysis of the field distribution of the intensity of
Taylor series in the filter width, where the coefficients de-the noncommutation terms is given in this paper by compar-
pend on the spatial derivatives of the filtered field and théng LES and direct numerical simulatiofDNS) data ob-
mapping function. In this way, extra terms appear in the fil-tained from simulations of the incompressible turbulent
tered equations, which increase the differential order of thehannel flow at Re=180 and 395. It has been found that the
equations. The authors suggested both the use of additionlalcal intensity can be as high as 21% of the local advection,
boundary conditions to maintain the well-posedeness of thaith a field volume averaged relative intensity of about 8%.
problem or the use of asymptotic expansions of the filtered.ower values apply if reference is made to the sum of the

1070-6631/2003/15(7)/1926/11/$20.00 1926 © 2003 American Institute of Physics
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local advection, pressure gradient, and molecular viscousept of commutation error on the flow solution from that of
flux terms. An interesting result is that the use of differentnoncommutation term in the equations. Bgmmutation er-
subgrid scale models negligibly affects the local and averager we mean the error which affects the flow solution, when
values of the sum of the commutation error terms. As ex-a variable scale filter is used, but the equations are used as if
pected, the high relative intensities of the commutation termshe operations of filtering and differentiation commute. By
are concentrated in the flow regions where the gradierd of noncommutation terrwe mean any of the terms which origi-
is high. However, the question of the possible extension ofiate in the equation of motion when the filter scale is a
the effects on the macroscopic scale of the flow is still leftfunction of the point. It is necessary to recall that in previous
open. literature the latter was called commutation error, since the
A generalization of the procedures proposed by Ghosagquations were always used as if they were commutative and
and Moin and van der Ven is presented in the paper by Vasithe omission of the terms, which should make them complete
lyev etal* A minimization of the commutation error is when the filter length varies, introduced the error in the so-
achieved by using a class of filters with- 1 vanishing mo-  lution.
ments, where is the order of the employed numerical dis-
cretization scheme. The authors also supply a group of rules
to construct.discrete fiIFerg that commute wit.h differentiation”' NONCOMMUTATION TERMS AND THEIR
up to any given order inside complex domains. APPROXIMATION
The method here proposed relies on an approximation of
the specific noncommutation term that corresponds to the The loss of the commutation between the spatial filtering
different terms of the motion equations. A commutation ap-and the differentiation operations is related to the use of a
proximation of the fourth order in the filter width can be variable filter, which in the more general configuration is
obtained thanks to the introduction of successive levels o&nisotropic. In this case the filter width is the veci@x)
average. See Sec. Il for the basic formulation relevant to as (51(X), 52(X), 53(X)).
isotropic grid stretching and the Appendix for the more gen-  For reading convenience and as the isotropic stretching
eral anisotropic case, which also specifies the formulatiorconfiguration is conceptually nonreductive, a scalar filter
that is appropriate to wall-bounded flows. scaled(x) is assumed in what follows. However, the general
While performing large eddy simulations, the present ap-anisotropic configuration of stretching is dealt with in the
proach can conveniently be used together with subgrid modAppendix, which also specifies a filtering formulation that is
els based on analog multilevel filtering, e.g., models whichsuitable for wall-bounded flows.
apply the dynamic procedure, Germaeial. (1991),” Ger- Let us suppose we have chosen a given class of integra-
mano (1992, or the Bardina mixed modélL980.° The fil-  tion volumes
tering approach we use in this paper is that of the very fun- ]
damental volume average, first applied by Smagorinsky in Vs={ne k%[ n|<s)}
19631° The volume average formulation is advantageous beand an average operation for the variab(g):
cause it does not introduce an error associated to domain
boundaries, thus a_voiding th(_e problem of_ the addition of fur- <f>§:if f(x+ ) dy= ij f(x+ 08 dE, (1)
ther noncommutation terms in the equations. Vsl Vilv,
o Sk Sauelors Munere the nansormatos i hes been used and, a5 a
Sec. 1. ’ consequence/; =V 4/ 8°. Please note that, with this choice,

. the width of the averaging volumes is twice the filter scale.
A priori tests on the turbulent channel flow databases by Avariable filter scale is introduced by allowingfo be a
Alfonsi etal. (1998 and Passoniet al. (1999, Re, function of point, 5= &(x). In this case

=180, and by Moseet al. (1999, Re =590, are presented point ' ’

in Sec. IlIA. An example of application of the numerical d d |1

procedure is presented in Sec. Ill B, which focuses attention a_xi<f>5:&_xi Vlfvlf(x+ 5(X)§)d§}

on the fact that this systematic error is important throughout

the entire flow and not only in the regions where the nonho- )

mogeneous terms of the motion equation, which originate =(Vf-5,>5+(9—xi(x)(Vf-§>. @

from the lack of commutation of the operations of differen- )

tiation and filtering, are different from zero. The capacity of BY Virtue of the fact that

the present procedure to reduce the relevant absolute and J

relative errors is shown. %<f>5=%
Before proceeding to the other sections, it is necessary to

open a digression on the terminology adopted in what fol-

lows. Since, among the points being discussed in the paper, =V, )\ Vf-£d§, 3

there are: the structure of the motion equation, once a vari- !

able scale filtering is used, and the role played by the termeecalling thaf V&) s=(Jf/dx;) s, it results that the filter of

which originate from the noncommutation filter- the derivative is a differential operator acting on the filtered

differentiation, we have had to clearly distinguish the con-field:

1 of
V_1Jv10_><j(x+ o(x)é)dé
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< (9f> 98 ¢ However, from(9) it can be observed that
22 Ty, 4
axi/ < )~ IXi PR @ (F1[f16%),5=F [ {18+ 4F [F[f]6%] 8%+ -
The noncommutation terd , which is defined as =8%F[f]+0(5%),
of d so that
Gi((f)s)= < > ———(fs, 5
il 5 O (F)a5=((f) )25~ Fal f16°+0(5%). (15

can be represented through) by the product of the filter \When the expressior(@3) for f and(15) for (), are intro-
space derivative and the filter derivative of the filtered vari-duced into(8), one obtains

able: Ay 1 2
EE) 25(<<f>5>25 (f)5)+0(5). (16)
Ci’(<f>6): 07X| &5< >5 (6)

When using(16), the noncommutation teri@ [see(6)] can

The here proposed method is based on an approximatid?€ approximated by

of relation(6). The problem could be faced adopting a trun-  — J

cated series expansion @ff) ; in terms of powers of (Gho- C((fa)=—2 55{(Ds2s=(Fo), 17
sal and Moin, 1995' However, this would increase the order '
of the equations, and thus require additional boundary con?
ditions. Here a numerical approximation of thérst deriva- — )

tive is used in conjunction with truncatetiexpansions. Let C(f)o)=Ci((f)s)+ 50(52)- (18
us write the second-order finite difference approximation '

which implies

In order to analyze the approximation errak §) O(5%)

(955 = () gan—(F) s ) +O(R?). %) and give a true estimate of it, let us write
o(xX)=A¢(X), (19
Choosingh= 6,

where A is a reference value of the filter width which is
HF)s usually associated with the portion of the domain where con-
95 2_6(<f>26_<f>0)+0(52)- ® gitions of near homogeneity of the flow hold. Functipt)
is a positive nondimensional function which belongs to the
interval [ 6, /A,1], in the homogeneous region of the flow
¢(x) is constant and equal to 1. Functigiix) varies in the
inhomogeneous regions, though it keeps values that are
greater tham,,i,/A, which is a value that must correspond:
(i)—when the local scale invariance may be supposed—to a

Now, the problem to face is that of the approximation of
(f)o=1 and(f),s in terms of relevant averaged quantities.
Using a Taylor expansion of the integrating function(in,
we obtain the following expression fdff)s, in terms off,
and the filter width:

1 1 convenient minimum value of the filter width still inside the
(Fs(x)=Ff(x)+ Eal,o,ovzf(x) 8+ E[az,o,o(ai+ 2 inertial range, andii)—when the local scale invariance does
not hold—to a scale of the order of the scale which charac-
+93)F(X) +6ay 1 595+ 25 terizes the local turbulence structure, as, in case of wall

flows, is the scale of the quasistreamwise vortices peculiar to

242
+ 92091016+ 0(5°) the viscous sublayésee Moin and Kim, 1982 and Ghosal,
— F(X)+ F4[ 182+ F,[ f]6%+O(89), (9  1999).
o ) Introducing (19) and ang*1a¢ into (6) and deducing
where coefficientsy, are defined as the & derivative from expansiof®), written up to the fourth
1 o o ok order of accuracy, the noncommutation term can be esti-
aijk=v—f & &' &51dg, (10 mated,
1Jvy
and the opelratorglz, F, as Cl({f)5)=— ax &¢< Yae
Fil-1=2a100V" (11

1 =—2—<ox> Fi[f]A?
Fal 1= grlazod di+dz+ d3) +6ay: d 915+ 0105

- +2¢2(X)F,[f]A*+0O(A®)). (20)
903 ] 12 Using expansion(9) twice, after having insertedl9), ap-
From (9) it follows that proximation(17) can be estimated as
f=(f)s—F[f]6>°+0(5% (13 - o 1z , ,
and then, averagin@.3) on a volume of linear dimensions2 G (o) 2 IX; e (FalTIAT (47 C0F( ]
(F)25=((F)o)25— (F1[F16%)25+ O(8%). (14 +Fi[@?F[f]])A*+0O(A®)). (21
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To keep the validity of estimatg®0) and(21), care must be ~ (X)
taken to select a functiop(x) which, in the region of filter Ci((f)s)=— 350X [(9i(T) 5)25— 0i(T) ]
variation, also possesses first and second derivatives of
O(1). Possible examples are transcendental functions such (9, 8(x))%+ ,5()()(9_25()()
as arctarx;), tanh(;). - 25°0) [(F)sr2s—(F)sl,

A comparison of(20) and (21) yields

5 (26)
G (o) =G ({F)s)~O(A%). (22) whose order of accuracy can be determined by again using

the transformatiod(x) = ¢(X)A. If the expansions of the non-
commutation termg” are compared with its approximation
C’, it is seen that, also in this case, the erroOigA%).

Even if the present analysis is based on the use of the
volume averages, it can be observed that it remains valid in
the case where a more general kind of filtering is adopted. A
lX'/veight functiong(£), introduced in(1), only modifies the
coefficientsa;j [Eq. (10)], which should now be defined as

Consequently, whe(l7) is used, a fourth-order noncom-
mutation term in(4) is produced instead of the second-order
error, which would be obtained by totally neglecting the lack
of commutatiort. Introducing a finite difference approxima-
tion of a higher order thari7), and, consequently, further
levels of average, it could be possible to increase the acc
racy of the approximation of the noncommutation term, lead-
ing to a higher order error if22).

This analysis pertains to differential operators of the first
order. The analysis is similar for the second-order differential a'Jk_f 9

operators. The structure of the correction terms remains the

same and to reach the fourth order of accuracy the sam'(—:l wever, the n?]ncomgnutatmg tgrfs) and ILSt ?pprtoxm:—
number of levels of average must be maintained. The pIon remain unchanged, provided the weight function has a

proximation of the noncommutation term now includes the compact support. It is always possible to chodee), so that
filter of the variable spatial first derivatives. the actual integration domain of the filter lies inside the flow
The noncommutation term of the second derivatives, bedomaln[for instance, setting a value that is lower than the
ing defined by distance from the wall of the first layer of grid points for the
minimum of 8x)]. In this way, the compactness of the sup-
gf pr port preyents the error linked to the presence of finite
c:;<<f>5>=<%> - —(f)a, (29  boundaries. | |
28 IX; It should be noted that this procedure operates in the
physical space and does not rely on the use of a mapping
can be obtained by taking the derivative of the first derivafunction of the nonuniform grid. Centered volumes of aver-
tive (2) as age have been adopt¢see Eq.(1)], even though they are
not strictly necessary as far as the average process is consid-
ered. However, this choice shows two advantageghysi-
f laxl (X+ 6¢)dg cally, when the flow is incompressible, the center of the vol-
ume of average is also the center of gravity and thus the
8 1 3 I%f point of application of the average momentugin) analyti-
2o |, 2 Einy o (XT 08)dE cally, it allows a compact and second orderAimepresenta-
i V1JVqj=1 JOAI . . . .
tion of the noncommutations terms, which in turn are ap-
2 proximated by the present procedure with an accuracy of the
_(a_x) V_j > §j§ka_—(x+ 68 d§, fourth order. The choice of a noncentered volume of aver-
i 1JVyj k=1 XJ(?Xk . . . . . . .
ages, which, in principle, is mathematically feasible, yields a
(24)  first order inA representation of the noncommutation terms,
which would also lead to a much more cumbersome analyti-

fede

Gi((f)s)=

that is, cal structure-®
o P8 9 YL 7 Noncommutation terms in the averaged
i((Fs)= ﬁa_5< )om 2o (95(9Xi< )s incompressible Navier—Stokes equations
1

Let us consider the incompressible Navier—Stokes equa-

&5 H . .
B ( X ) (952< )s (25) tions written in the form
4u;i=0, 27
and can consequently be approximated using the finite dif- Ui+ 3, (L) + 3y p— v&-z-uizo_ 8

ference for thes derivatives, as performed for the noncom-
mutation term of the first derivatives. The use of the standardf @ filter operator is applied the system becomes

three-point formula for the second derivative {df s with (3u))5=0 (29)
respect tas and of relation(16) for ﬂf%(i(f)& [the second term ,
on the right-hand side of E¢25)] yields (i) st (d5(Uju)) 5+ (ip) 5~ v(dj;u;) s= 0. (30
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When 6, the linear scale of filteringsee for instance the filtering operator requires the extension of the dependent
definition proposed in Sec.)llis not uniform in the flow variables beyond the rim of the domdisee Fureby and Ta-
domain, the averaging and differentiation operations ndor (1997°].

longer commute. By introducing the subgrid turbulent It can be observed that the use of the double level of
stresseR“” (ui)&(u;) 5~ (u;u;) 5 and the noncommutation average highlights the convenience of coupling this proce-
terms(C/ , C,, , for the first and second derivatives, as dis-dure to subgrid models which also employ it. These subgrid
cussed in Sec. Il for the isotropic filter configuration and inmodels are the mixed model by Bardiegal. (1980° and, in

the Appendix for the general anisotropic and the wall-general, all models that apply the dynamical procedure by

bounded flow configuratiofisee the isotropic relation&),
(6), (23), and (25); the anisotropic relationgA5)—(A6),
(A18), (All), (A20); the wall anisotropy relation$A17),
(A21)], the averaged equations are written as

ai(ui) 5= —C{ ({Ui) 5),
‘9t<u|>5+‘9(<u|>5<uj>6)+(9<p>5 V‘? <U|>5 dj R

= —C/ () (U) o) = C (P o)+ vC ((Ui) ) +C] (R,
(32

(31

Together with what has been explained in detail in Sec. II
[see(17) and (26)] the present procedure approximates the

noncommutation term on the right-hand sidg2if) and(32)

with an accuracy of the fourth order. The correction terms
can thus be represented by the following group of relations,
which are determined from the field information obtained

through two successive average levélse second being
computed over a linear scale)2

9 8(X)

Cl((uiyp)=— 25(%) S LU 9)2s—(Ui)sl, (33

C (U (uj) o) = x) [<<U ) {Uj) )25 (Ui) £U;j) 5],

(34)
~ ,6(X)
Cl((p)s) = T 25(%) o LR s) 26— (P) 5] (39
" j ( )
C ((u; >5)__2 25(x) o L{95{Ui) 8) 25— (i) 5]
(9;8(X))2+ 8(X) 2 5(X)
+— 26%(x) l (Ui} syas—(Ui)sl [+
(36)
C/(R)=— <R<‘”>25 R, (37)

25 x)

Germanoet al. (19917 and German@1992.8

The filtered equationg29) and (30) are invariant under
Galilean transformations. Under transformation—t, x’
—X+ct, a spatial variation of the filter scal¥x), in thex,

t reference system, becomes a spatio-temporal variation
O(xX)=8(x'—ct')=5(x",t") in thex’, t’ system. The tem-
poral dependence of the filter scale yields to the presence of
a noncommutation term, which is also associated with the
nonstationary term. The transformed noncommutation terms,
and the relevant approximations, released by the unsteady
and the convective terms, however, cancel each other. Fur-
thermore, the terms obtained from the divergence of the
stress tensor in a system lik81) and (32) and the corre-
spondlng approximation&35)—(37) are all Galilean invari-
ants, which assures that the variable scale filtered equations
and their approximations are also such.

Another general implication, linked to the presence of a
finite domain, is that the boundary conditions for the filtered
variables should be different from those for the unfiltered
variables. The problem of wall boundary conditions for the
filtered field could be treated with this procedure by adopting
one of the classical approximated conditions, which rely on
the introduction of a special subgrid model, that is, the wall
model, which is apt to represent the inner layer dynamics and
which puts the first grid point inside the logarithmic
layer®®~8|t could also be treated by placing grid points well
inside the viscous sublayer to resolve the near-wall dynamics
and by assuming no slip and impermeability boundary con-
ditions. It should be recalled that the latter conditions, which
in theory should not be used for filtered velocities, introduce
an error ofO(A?), independently of the filter shape. Their
use requires the subgrid model, which should represent the
nonhomogeneous and anisotropic structure of the viscous
and buffer layers, to be altered in the inner region. The em-
ployment of anisotropic models based on a tensorial turbu-
lent viscosity would be opportune, see Hori(#p90,'° Ca-
rati and Cabo{1996,%° the review monography by Sagaut
(2001, Chap. 5)8 and also the differential angular momen-
tum model (lovieno and Tordella, 200Z* which, being
based on the representation of the turbulent viscosity through
the moment of momentum vector, is well suited to assume an

which must be accordingly modified in the case of anisot-anisotropic formulation.
ropy of the stretching of the computational grid, see the pre-

vious comments and the Appendif¥A11)—(A12), (A16)—
(A17), and(A20)—(A21)].

The adoption of the volume average allows the filtere
variables to be fully supported inside the physical domain.

Ill. NUMERICAL TESTS

dA' A priori tests on the turbulent channel flow

In this section a set dd priori tests is presented, which

As a consequence, a peculiar property of the present procerovides information on the field distribution of the noncom-
dure is that there is an absence of noncommutation termsiutation terms, their relevant approximations, and their ra-
associated with a finite or semi-infinite computational do-tios with respect to the physical terms from which they arise.
main in the filtered equations. Such terms arise when th&he data correlating the approximated and exact noncommu-
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tation terms have been determined by filtering the direct nu- __ 0003
merical simulation of the turbulent plane channel flow at
Re =180, as performed by Alfonsit al. (1998* and Pas-
soniet al.(1999,'? and at Re=590, as performed by Moser
et al. (1999.*2 The longitudinal momentum balance, which o001
implies a zero pressure honcommutation term, is considerec
Repetition on two different grid levels has been performed.
All the data here presented have been averaged over an if
terval of 1.2 revolution times.

Figure 1 shows the distributions of the exact noncommu-|.
tation terms and of their approximation according to the
present procedure, at two filtering levels. The convection  -0.002
term of the longitudinal momentum balance, its grid and sub-
grid scale decomposition, and the diffusive term are shown  -.003 ' ' L L '
in parts (a), (b) and (c), respectively. The filteré(x) +
=(AX,¢(y)Ay,Az), with constants\x, Ay andAz, varies 0.003
along the transversal nondimensiotwyatlirection according
to (y), wheree(y) €[0,1], andy e[ —1,1] is a function of
at least clas<C?. The variation ofe(y) has been laterally
arranged(in 20% of the channel width along the wallas
follows:

(a)
+——— A=9.84107, Re =180

0.002 |

y+(<u+v+>)

A=492-1072, Re =590

(<)

-0.001

)
_~
S
Rutt

+
xy

0.002 -

’y+(<u+><v *>), -C’W(R
: o
g

tanh +1)tanha(1—
e(y)= anhaly=+ 1)tanha( y), a=4, (39
tanit a

o
o
=1
S

o
=)
=1
=

where a is the parameter that controls the gradient of the
filter scale at the wall. The noncommutation terms on thel™

first and second derivatives have been determined for sucl 0002
an anisotropic structure of the filter through the use of rela-

tions (A17) and(A21). The data in Figs. (B and Xc) show -0.003 . . L L '
that the present procedure yields, on average, for the Rey 0 y

nolds stress,

A=492107

/ =Y 0.006 |- c i
IC'[a IC"=C'a (c)
I 0'261 ’ ’ O 13,
|C"[2a IC"=C"|oa ~ 0004 «— A=984-107 .
lc'=C'4 1" =C| s 5
= = ~ 0002 :
|C/|A 0091 |C/|2A 0 18, +: A=4.92 .102
and for the viscous stress, E{ 0
~ A
c" ) c - } e
| . |A =0.25, |T~"£:O_17' i 0,002
|C |2A |C _C |2A ::
y ~ ) -0.004
|C"_CH|A:O]-O |C”—C"|2A:015 |}
1C"[ s o IC"|2a o -0.006 . . L L L
B 0 10 20 30 40 50 60
whereA =4.92< 102, o

These figures have been obtained by neglecting the data

that belong to the first 5% near the wall. where the numeric FIG. 1. (8) (—) Average values of the exact noncommutation convection
’ aterm and(---) correspondent average values predicted by the proce@yre.

Uncert_ainty due to the spatial discretization is_ high—poncommutation approximated terms for the resolved Reynolds stresses
especially as regards the exact noncommutation terms.-) and for the subgrid scale stresges). (c) (—) Average values of the
computations—and where these results deteriorate by nearq‘gancommutation diffusive term arfe--) correspondent values predicted by
0 the procedure.

25%.

The results of the numerical test at R&90 compared
to those at Re=180, see Fig. (&), show a good invariance
of the accuracy of the procedure with respect to the variacan be considered accurate. The analysis of numerical errors
tions of the flow control parameter. in the LES of turbulence with cutoff in the inertial range

It should be remarked that a procedure which is capabléerrors due to spatial discretization: finite-differencing errors
of predicting at least 90% of the value of the noncommuta-and aliasing errojsn fact shows thathe resulting errors are
tion terms, using the rather large value & 4.92<10 2, very large, of the same order and even larger than the mag-
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nitude of the subgrid term over most of the wavenumber y*

interval, for finite difference schemes up to eighth-order ac- |A-,.0___ 9 18 54 90 126 162
curate, irrespective of the grid resolutidiaf. Ghosal, 1996, : ' ' ' '
pp. 201-20222 In such a general situation, it may be con-
sidered a success that the procedure is capable of predicting
nine-tenths of the value of the noncommutation terms. The
relevant average error cannot spoil the overall numerical re-
liability of the simulations since it is about one order of
magnitude lower than the errors due to the spatial discretiza-
tion.

A warning is necessary regarding the numerical compu-
tation of the exact values of the noncommutation terms. Di-
rect computation through the definition is not recommended,
as, even with the implementation of a numerical differentia-
tion of the sixth order of accuracy, it artificially amplifies the
fluctuations that are naturally present in the data field. The
exact values of the noncommutation terms should be cor-
rectly evaluated by using the integral representation of the
derivativesd/ds or 9/ 95; , such ag3) in Sec. Il or(A3) in the
Appendix. No such numerical problems affect the computa- h (b)
tion of the approximated noncommutation terms. I

Figure 2 provides information on the relative importance v, T A=492 10_3’ a=4
of the exact noncommutation terms with respect to the physi- ----A=98410%a=4
cal terms which causes them. In p&a the average ratio
|Cy((uv))/dy((uv))| has been plotted for=4.92x10"2,
A=9.84x10 2, and for a doubling of the wall value of the
stretching factoe= dy¢=8. It can be seen, that close to the
point where the Reynolds stress reaches its maximyim (
~30), and the divergence therefore takes in the average very — o2 th !
small values, ratio values as high as 0.38 are reached with R AL
the coarser grid. The comparison of these results with the w T . .
results of Fi_g. 1b) indicates that the average exact value of 0'91 0 08 06 04 0.2 0.0
the convection noncommutation term is of the same order as y
Fh,e ?Verage, divergence of the subgrid Stresses' FurthermoﬁG. 2. Average of the absolute value of the ratio between the exact non-
it is interesting to observe that the doubling of the stretchingGommutation terms and the physical correspondent terms in the motion
factoraincreases the relevance of the noncommutation termequation.(a) Convection,(—) |C;((uv))/d;({uw;))|, (b) diffusion.
in this region nearly as much as the doubling of the grid
coarsening does, see in FigaRthe near wall region where
y*=<14. Figure 2a) also shows a positive comparison of the
field integral value ofC;((uv))/d;({uu;))| given by Fureby
and Tabot with the distribution of the same ratio that has
been yielded by the database used H&fé.

With respect to the average ratjGy, (u))/aiy(<u>)|, uti
Fig. 2b) yields maxima local values of about 100% for the solution. . . .
coarser resolution, and about 60% for the finer one, close tg For this purpose, here it has be_en considered useful to
where the relevant noncommutation terms reach their Ioca?tUdy the behavior of an e_xtremely simple flow m_oo!el, a §ort

. . . . of conceptual model, which has two characteristics:—just
maxima near to the wall. Leaving aside local maximum val-

one type of commutation source term is present—its exact
ues detached from the wall and relevant to the coarser res?- . . ) X .
. ) L . lltered solution, that is, the variable scale filtered solution
lution, this ratio, in the central part of the field, settles to

not affected by the commutation error, is known and thus
constant lower values close to &:0.1. )
could be used as the reference solution. The second charac-
teristics can only be obtained by filtering the exact solution
of the unfiltered equation of the motion.

As seen in Sec. Il, there are four types of noncommuta-  On the other hand, to prove the efficiency of any given
tion terms in the variable scale filtered incompressibleprocedure for the correction of the commutation error, it is
Navier—Stokes equation81), (32), which are all source also necessary to know the exact filtered solution of a test
terms. If one limits the analysis of their influence on the flowflow, which, in turn, requires knowledge of the exact flow
solution to the determination of the field distribution of the unfiltered solution.
values they take with regards to the values taken by the origi- Such a reference state cannot be found in a turbulent
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nal terms of the equations, one would mainly find the fore-
seen result that the noncommutation terms are not negligible
where the gradient of the filter scale is high. However, this is
not sufficient to understand the way, localized rather than
extended, in which the commutation error affects the flow

B. Commutation error on an analytical solution
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configuration of flow, for which no exact solution is avail- of e 0.08
able. Reference is therefore made to a laminar flow, which I// N < |
has an exact solution. One should note that, in such a cast /’ \ Sl 0.06
the filtered equation of the motion, when the filter length is a §0~8 I i \ e 0.04
function of the point but the commutation error correction is = H o) AN E/E
not considered, is identical to the unfiltered equation. Doef i) N TP 002 =
The steady laminar incompressible channel flow hastw i N 4
been selected as the test flow, since it has only one commu_ g4t / /’ C" 1 <us" 10 Y—
tation term, the diffusion one, s€86), and its solution is g ,'" ! L0.02 ©
analytically known. i/ '
The nondimensional momentum equation for the steady 0.2 ¥ ! 1-0.04
incompressible channel flow is written as J !
0.0 ’ ! ! * ! -0.06
) (Gp)Yd®? 0.0 0.1 0.2 0.3 0.4 0.5
dyu=Red,p=— Y Vye (0,1, (39 Yy

] ) . o FIG. 3. (—) Filter scale across the chanfiél= ¢(y)A, a=8, seg44), Sec.
whereG is the modulus of the dimensional longitudinal pres-niBJ; (--) local values of the commutation ter@, see(42), referring to

sure gradient and the adimensionalization is based on the diffusion term;(---) R=E, /E, nax, relative commutation error for the
channel widthd. the gradienG and the density) (the non- solution of the filtered noncorrected equati@{=0) normalized with re-
’ ’ spect to the field peak valug, = [ ({(U) — (U)exac)/{U)exact -

dimensional pressure gradieffp results equal to-1). The
boundary conditions are

u(0)=0, u(1)=0. (400 along the transversal direction according&0y) = ¢(y)A,
L I where ¢(y) €[0,1], with A=0.1, is a function of at least
The corresponding filtered equation is classC2. The variation ofe(y).
2 o
Fu)(y) +Re=—C"((u),), Vye(0,D), (41 tanh 21y tanh 22(1—y)
o(y)= : (44)

whereC"((u) ) is set to zero to determine the solution which tanrt a
neglects the commutation error and whetg(u)) is ap-

proximated by has been laterally arranged in 20% of the channel width

along the wall, setting the paramete+ 4, see Fig. 3.

~ S'(y) , , By contrasting the filtered exact solution, the absolute
C'((uye)=— W[<<“>6>25_<“>6] and relative errors relevant to the corrected and noncorrected
solutions are compared in Fig. 4. The corresponding error
8" (y)%+ 6(y)8"(y) recovery, with the wall distance, is also shown in Figs. 2 and
N 252(y) [({W)s)25= (Ul 3. It can be seen that the present procedure greatly reduces
the commutation errors: in the central part of the flow, an

(42)  almost full recovery is obtained.

to determine the solution which accounts for the commuta-
tion error with the present procedure. The numerical solution

of Eq. (41) is determined by solving the corresponding un-  0.02 1.0
steady filtered equation T e _
1 2 1 S 'l/.f/" T .-
Iu) s~ R_e3y<u>5: 1+ R_ec ((u)s), VYye(0,1 // A Tt e
B =
(43 o i §
through a fourth-order Runge—Kutta time integration @0'01 i 05 N
scheme—carried out until the steady state is reached— ;’I;' 2
coupled to a fourth-order finite-difference discretization of , =
the domain. The double level of average has been compute I B
using a third-order Hermitian quadrature formula. I e
The filter of the exact solution gives the velocity distri- 0.00 » . . . : 0.0
bution 0.0 0.1 0.2 0.3 0.4 05
y
Re 1, _
(u)exact=7 y(l—y)—§5 1, FIG. 4. Absolute E,=(8/Re){U)—(U)exae) (—) and relative E,=[({u)
—(U)exacd/{U)exacd (-—-) error distributions of the filtered velocity distribu-

hich . h f hich th tions: A—without the commutation correctiolB—uwith the commutation
which constitutes t e rererence On'W ich the pontrast bec'orrection. Curvé---): error recovery E,(A) —E,(B))/E,(A) with the dis-
tween the commutation corrected filtered solution and theance from the wall. The exact filtered velocity reference distribution is

noncorrected filtered solution is based. The filter scale varie@ .= (Re/2Yy(1-y) - 354y)1.
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For a comparison of the distributions of the local valuenation of the relative order of magnitude of the noncommu-
of the noncommutation term and of the relative commutatiortation terms, with regard to the original physical terms of the
error on the solution, see again Fig. 3. It is important tomotion equations, and to analyze the effects of the commu-
observe that, by neglecting the commutation correction, théation error on a flow solution. The chosen test flow is the
field results are affected by a systematic error not only in théwo-dimensional incompressible laminar channel flow,
region where the filter length varies, but also in the regionwhose dynamics consist of the balance between the constant
where it is constant. This behavior is due to the accumulatiofongitudinal pressure force and the viscous diffusion. In this
of errors on the velocity variable and its derivative, which iscase, only one type of commutation source term—
due to the lack of the two diffusion addenfigee(41) and  diffusion—is present, and this is only of relative importance
(42)] that should enter the momentum balance equationin the lateral part of the flow, according to the filter gradient
Even though these terms are significantly different from zeralependence. The error, due to the lack of a noncommutation
in a limited portion of the flow they affect the entire field to term in the motion equation, is however also transferred to
a great extent. In the central part of the flow, where thethe central part of the flow. The result is a biased filtered
noncommutation term is very smalFig. 3), the relative velocity distribution where the relative error in the central
commutation error results to be of the same order as the peaiart of the flow, where the filter gradient is zero, is of the
value of the field, while the absolute error reaches its maxisame order of magnitude as the local maximum error of the
mum value(see again Fig. 4 field, which is situated at a distance from the wall of about
15% of the channel width. It has been shown that the present
IV. CONCLUSIONS procedure can reduce the commutatlpn error by one order of
magnitude in the central part of the field.

A procedure to explicitly insert the correction terms in
order to counteract the commutation error associated with
the use of a variable filter s.cale.in the filtere(_j gquati()_ns OTACKNOWLEDGMENT
motion is here presented. With this procedure it is possible to
directly compensate for the commutation error on the filtered  The authors would like to thank Professor G. Passoni for
field. The procedure uses volume average filtering, but mor@elpful discussions and for making the turbulent channel
general filter operators are also possible. Both isotropic anflow database available.
fully anisotropic filtering configurations are considered. Ap-
proximated commutation terms, with an accuracy of the
fourth order in the filter width, are inserted into the motion
equations, which do not increase their differential order. Th
difficulties related to the addition of further boundary condi-

tions are therefore avoided. The proposed representation of \When the geometry of the flow domain requires stretch-
the commutator operators is based on truncated expansiofigy each direction independently, which implie&(x)

in the filter width of finite difference approximations, which = (5,(x), 8,(x),85(x)), it is opportune to adopt a class of
make use of a multilevel average operation. This fact sugmtegration volumes of the kind

gests the joint use of the present procedure with subgrid

models which need an explicit filtering of the equations of ,, :[ R3:
. . . P nel. ) )

motion, such as dynamic and mixed models. 01" 6, 63
A set of a priori te_sts, with a plane channel flow DNS .nd an average operation for the variabléx)=f(x;

(Re,=180) as a test field, proves the good correlation that, SiE):

the present procedure yields between the approximate and '’

“exact” noncommutation terms. It also provide information 1 1

on the relative importance of these terms with respect to the <f>5:v_5fvﬁf(x+ ndn= v, fvlf(XiJr 96))dg,  (A2)

original physical terms. The influence of the field resolution ) )

on the general noncommutation term is confirmed to b&vhere 1=(1,1,1), the transformationz;=6;¢; (with det

O(A2). Asymptotically, the accuracy of the present approxi-(¢7i/9€) = 816,55) has been introduced and thug,

mation is expected to b&(A%). At the resolution levels =V5/616,03. o .

corresponding to Re=180, these tests show a reduction of [N Such a situation, by virtue of the fact that

PPENDIX: NONCOMMUTATION APPROXIMATION
OR ANISOTROPIC FILTERS

(711 72 7]3)

< 1] (A1)

the absolute errors, after halfing the reference filter scale, thaty 911
is nearlyO(A%). - _ _ o (9—5k<f>5:(9—5k V_1Jv f(xj+5j(x)§j)d4
The filtering is a mathematical operation, which is not !
specific to the Navier—Stokes equations and is independent 1 of g
of the solution typology. When it is varied, the filter causes = Z —f T(xﬁ— 6;(X)§;) ﬁ(xﬁ 5;(x)¢;)d&
one kind of noncommutation term for each differential term I=1 V1 v, 0] K
present in the equations of the motion. A test, for which the 1 of
analytically exact(unfiltered and as a consequence filtgered V. f fk%dfu (A3)
solution is available, has been considered to overcome the 1V k
limitation of an analysis, based on theposterioridetermi- it is obtained
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it ! f f(x + &, d Z ot +5 X+ d
ax (D= e |V ), Tt a0 dg = vl ax, (+ 8008) 7 ( i+ 8)(x)€)dé
3 3 3
1 of 96, of 1 of 06; 1 of of d6; o(f
5 L[ [t g g [ g3 L[ A g (o) 5 80
i=1 Vi (?Xj X (9Xj \2 Vlo"Xi =1 X A\ V1(9Xj X 5 171 X (95]'
I
where 5}<i is the Kronecker unit tensor. A28 azf
As in Sec. ll[see relatior(4)], for the isotropic configu- =((f) X)) 5+ 5~ 72 ,qo, — — +0(A%),
= X

ration, it results that the anisotropic filter of the derivative is

a differential operator that acts on the filtered field:

(A10)
since from(A8) (g)s=g+0(A?), Vg.

3
ai < ) E 90 <f> (A4) The basic approximation for the anisotropic noncommu-
ax, s &x, o X 99 o tation termC;/ is derived through these expansions as
3
The anisotropi tation tei@, which is defined =, 9% 1
aSe anisotropic noncommutation teih, which is define C (<f>5):_2 (9_.J%(<<f>5>5+5~e-_<<f>5>676-e-)v
=1 0X; i N it
o (A11)
G(fa= < > —(fs, (A5)
J J
Xi X —_E axl 2@ (<<f>5>5+5e <<f>5>5—5jej),

can now be represented througi) as the sum of the prod-
ucts of the filter space derivatives and the filter derivatives of
the filtered variable:

(A12)

while the accuracy of the anisotropic first derivative commu-

tation error and its approximation can be verified to be
3

G == 25 (A6) SNl

- =— -— . ' _ A2 4

=7 2 Ty 95410 GUNI=A22 dei7 o2 TOBY. (A13)
Proceeding in strict analogy with what has been done in 5{(<f>5)=0{(<f>5)+0<A4). (A14)

Sec. I, the anisotropic noncommutation term can be ap-
proximated through second-order centered finite differencesy filtering only in thej direction, expansioiA8) becomes

3 1 2

006;
—;1 a_xll 2_5j(<f>5+5jej_<f>576]-ej)+O(5j2)-
(A7)

f
Cl((f)g)= jz(x)+O(A4),

d
(D a2se =T+ 20%0%(X) —
X

which implies
Agam, using a Taylor expansion pf the mtegrat_mg function UD ase—{Fs=UD dsrse— (s se+O(A%),
in (A2), where only even derivatives appear since the do- I 11 11
main of integrationAl) is symmetric with respect to all the and, though keeping the same order of accuracy, the equiva-
integration variables, expressions are obtained for quantitident representation for both relatiotd11) and (A12) be-

such as(f)s and (f),;ﬁjej, in terms of f, and the filter comes
width—which is now defined as;=A¢;(x), Vj, whereA B 3 451
is a reference value fd@| and O<¢;(x)<1, Vj, x: C({(fyp=—>, a_)(JE(«f)ﬁb&jej_(fm, (A15)
& ox 25;
1.2 92 o
f)=(F)ax)— 5422 aje’(x) — () +0(A%),  (A8)
D038 2 3050 =—E o 3 (Mg (D (419

where

— 1 J' 2d
TV

and

Az 52t
<f>6t5jej:<<f>6(x)>5t5jej_72 (PJ(X)a_
o+ 5;e

J

+0(A%, (A9)

For flow fields where the domain grid needs to be
stretched along only one direction, sayand whose typical
examples are two dimensional wall-bounded flows, the last
representation yields very simple approximation formulas.
By adopting the widely wused notation &(x)
=(AX,¢(y)Ay,AZ) in such a case with constanis, Ay,
andAz, the anisotropic approximation for the first derivative
noncommutation term results to be

Ie

GUha==7 Zgo(y

) (<<f>5>2<p(y YAy <f>5) (A]-?)

Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



1936 Phys. Fluids, Vol. 15, No. 7, July 2003 M. lovieno and D. Tordella

The anisotropic noncommutation term of the second deriva#H. Van der Ven, “A family of large eddy simulatiofLES) filters with
nonuniform filter widths,” Phys. Fluidg, 1171(1995.

tives, being defined by
3C. Fureby and G. Tabor, “Mathematical and physical constraints on large-
dof 5?2 eddy simulations,” Theor. Comput. Fluid Dy8, 85 (1997).
Ci(fys= —|) - —2<f>5, (A18) 40. V. Vasilyev, T. S. Lund, and P. Moin, “A general class of commutative
IX; 5 X; filters for LES in complex geometries,” J. Comput. Phyd6, 82 (1998.
5S. Ghosal, “Mathematical and physical constraints on large-eddy simula-
can be obtained as in Sec.[Hee(23)—(25)] tion of turbulence,” AIAA J.34, 425 (1999.
3 ) 5p. Sagautlarge Eddy Simulation for Incompressible FlowSpringer,
. J 5 Berlin, 2001.
C (<f>5) JZ 2 &5 <f>5 M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-

scale eddy viscosity model,” Phys. Fluids3\ 1760(1991).
8M. Germano, “Turbulence, the filtering approach,” J. Fluid Me@36,

3
S (9_51-( i ) 325(1992.
=1 9% \ 980X g °J. Bardina, J. H. Ferziger, and W. C. Reynolds, “Improved subgrid models
for large eddy simulation,” AIAA Pap. 80-135{1980.
3 96 96 52 103, Smagorinsky, “General circulation experiments with the primitive equa-
_ e} k) <f> . (A19) tions,” Mon. Weather Rev91, 99 (1963.
jk=1\ IX; IX; |36 7 1G. Alfonsi, G. Passoni, L. Pancaldo, and D. Zampaglione, “A spectral-

. . . finite difference solution of the Navier—Stokes equations in three dimen-
Before deriving the approximated form fdqA19), while sions,” Int. J. Numer. Methods Fluid28, 129 (1999.
wishing to maintain its fourth order of accuracy, it is useful **G. Passoni, G. Alfonsi, G. Tula, and U. Cardu, “A wavenumber parallel

to observe that the terms on the rlght -hand side which con- computational code for the numerical integration of the Navier—Stokes
equations,” Parallel Compu®5, 593(1999.

2
tain ((9 196 r?&k)<f>5, k;éj' by (AS) are of the same order 18R, D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulation of
as the remamder term. Therefore, they do not enter the ap-yulent channel flow up to Re590,” Phys. Fluidsl, 943 (1999.

proximation, which is 1p. Moin and J. Kim, “Numerical investigation of turbulent channel flow,”
3 2 2 J. Fluid Mech.118 341(1982.
~n ;97 6+ (51 ;) 183, W. Deardorff, “A numerical study of three-dimensional turbulent chan-
Cii(<f>5) == Zl 252 [<<f>6>2§jej - <f>5] nel flow at large Reynolds numbers,” J. Fluid Meet, 435(1970.
1= j 16y, Schumann, “Subgrid scale model for finite difference simulations of
turbulent flows in plane channels and anuli,” J. Comput. PHy5.376
S D0 f A20) 207
_j=1 Tj[(&( >5>25jej —ai(F)a]- (A20) G, Grazbach, inEncyclopedia of Fluid Mechanicedited by N. P. Cher-
esimov(Gulf, West Orange, NJ, 198\ol. 6.

Again, in analogy with what has been done for the first de-®U. Piomelli, J. Ferziger, and P. Moin, “New approximate boundary con-

rivatives, Eq.(A17), the following is obtained: ditions for large eddy simulations of wall-bounded flows,” Phys. Fluids A
1, 1061(1989.

19K Horiuti, “Higher order terms in the anisotropic representation of Rey-

2
o = (p&ygo ( y(’p) nolds stresses,” Phys. Fluids 2 1708(1990
Coy((fo)=— —[<<f>5>2<p(y)Ay (f)al 2 esses, Phys. FlIds & 1708 o ,
1) (y D. Carati and W. Cabot, “Anisotropic eddy viscosity models,” Proceed-
ings of the Summer Program—Center for Turbulence Research, Stanford,
dye 1996, pp. 249-256.

) [< y<f>6>2<p(y)Ay y<f>5]- (A21) 21M. lovieno and D. Tordella, “The angular momentum equation for a finite
element of fluid: A new representation and application to turbulent flows,”

Phys. Fluidsl4, 2673(2002.
1S, Ghosal and P. Moin, “The basic equations for large eddy simulation o>S. Ghosal, “An analysis of numerical errors in large-eddy simulations of
turbulent flows in complex geometries,” J. Comput. PHYE3 24 (1995. turbulence,” J. Comput. Phy425 187 (1996.

ely

Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



