2D Velocity statisti Uniform kinetic

Passive scala Mean Scalar

Scalar moments Conclusions

Flow descripti

Velocity moment

Diffusion of scalars across a turbulent energy gradient

M. Iovieno, L. Ducasse, D. Tordella, F. De Santi, S. Di Savino¹ and J. Riley²

¹Politecnico di Torino, Dipartimento di Ingegneria Aeronautica e Spaziale ²Mechanical Engineering Department, University of Washington, WA

Turbulence Mixing and Beyond, Trieste, August 2011 COST Meeting, Warsaw, September 2011

2D Velocity statistics
Uniform kinetic

Passive scal Mean Scalar

Conclusions

Stratified flo

Velocity moments Conclusion

Turbulent shearless mixing

General flow configuration:

Parameters: Reynolds number, Energy Ratio E_1/E_2 , Scale ratio ℓ_1/ℓ_2

movie

Introduction

3D Velocity statistic 2D Velocity statistic

2D Velocity statis Uniform kinetic energy

Passive scal Mean Scalar

Conclusions

Stratified flo

Flow descriptio

Velocity momen

State of the art

- Grid turbulence experiments:
 - ▶ Gilbert JFM 1980
 - ▶ Veeravalli-Warhaft *JFM* 1989

- 2D Velocity statistics
 Uniform kinetic
 energy
- Passive scalar Mean Scalar
- Conclusions

Stratified flo

Velocity moments

Conclusion

State of the art

- Grid turbulence experiments:
 - ▶ Gilbert JFM 1980
 - ▶ Veeravalli-Warhaft JFM 1989

- Numerical experiments:
 - ▶Briggs et al. JFM 1996
 - ►Knaepen et al. JFM 2004
 - ► Tordella-Iovieno JFM 2006
 - ► Iovieno-Tordella-Bailey *PRE* 2008
 - ► Kang-Meneveau *Phys.Fluids* 2008
 - ➤ Tordella-Iovieno *Phys.Rev.Lett.* (under revision)

3D Velocity statistics 2D Velocity statistics Uniform kinetic

Passive scalar Mean Scalar Scalar momen

Stratified flo

Flow description Velocity moments Conclusion

Main features of mixing layers

Shearless mixing layers shows the following properties:

- no gradient of mean velocity, thus no kinetic energy production
- the mixing is generated by the inhomogeneity in the turbulent kinetic energy and integral scale
- the mixing layer becomes very intermittent at both large and small scales [Tordella-Iovieno *Phys.Rev.Lett.* 2011]
- the presence of a gradient of energy is a sufficient condition for the onset of intermittency [Tordella and Iovieno *JFM* 2006; Tordella et al. *Phys. Rev.* 2008]
- 2D and 3D mixings: different asymptotic layer thickness growth exponent

3D mixing: Self-similarity

Introduction

3D Velocity statistics

Uniform kinetic

Passive scalar Mean Scalar

Conclusion

Stratified flo

Flow description Velocity moments Conclusion

$$E_1/E_2 = 6.7, \ell_1 = \ell_2$$

 $\Delta(t)$ is the conventional mixing layer thickness, $\Delta(t) \sim t^{0.46}$

Introdu

3D Velocity statistics

2D Velocity statistics Uniform kinetic energy

Passive scalar Mean Scalar Scalar momen

Stratified flo

Flow description Velocity moments Conclusion

Large scale intermittency

u = velocity component in the mixing direction

 S_{max} , K_{max} = maximum of Skewness and Kurtosis in the mixing layer

 η_{max} = normalized position of the maximum in the mixing layer

(Figures: sample data from simulations with $E_1/E_2 = 6.7$, $\ell_1 = \ell_1$, $Re_{\lambda} = 45$)

Intermittency vs. Energy ratio

Yaran Janetina

3D Velocity statistics 2D Velocity statistics Uniform kinetic

Passive scalar Mean Scalar Scalar moment

Stratified flo

Flow description Velocity moments Conclusion

Penetration

We define the penetration as the position of the maximum of the skewness normalized over the mixing layer thickness: $\eta = \frac{x_s(t)}{\Delta(t)}$

3D Velocity statistics 2D Velocity statistics Uniform kinetic

Passive sca

Mean Scalar Scalar mome

tratified flo

Flow description Velocity moments Conclusion

Velocity derivative

3D Velocity statistics 2D Velocity statistics Uniform kinetic

Passive scala

Mean Scalar

Conclusions

Stratified fl

Flow descript

Velocity moment Conclusion

Velocity derivative skewness

General behaviour

$$\xi = \partial u_i/\partial x_i$$
, $i = x$, y_1 and y_2
($Re = 150$, $t/\tau = 3.5$)

Increase of fluid filaments compression in the energy gradient direction, reduction of fluid filaments compression in the other directions

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic

Passive scal Mean Scalar

Scalar momen

Stratified flo

Flow descript

Velocity moments Conclusion

Small scale anisotropy

2D Velocity statistics

2D - 3D Comparison

$$2D: \frac{\Delta(t)}{\Delta(0)} \propto \left(\frac{t}{\tau}\right)^{0.77}$$

$$3D: \frac{\Delta(t)}{\Delta(0)} \propto \left(\frac{t}{\tau}\right)^{0.5}$$

2D Velocity statistics

2D - 3D Comparison

2D turbulent diffusion is infinitely grater than 3D diffusion: by defining a diffusion velocity as $v_D = dx_s/dt = \eta d\Delta/dt$ we have

$$v_{\mathcal{D}} = \propto t^{-0.28} \qquad \qquad v_{\mathcal{D}} = \propto t^{-0.57}$$

Introduction

2D Velocity statistics Uniform kinetic

Passive scala Mean Scalar Scalar momen

Stratified flo

Flow description Velocity moments Conclusion

Skewness

2D mixing

Skewness of the velocity component in the inhomogeneous direction for each energy ratio.

E₁/E₂=10⁶

___t/τ=1

t/z=5

-t/τ=10

--t/τ=20

 $(x-x_c^0)/\Delta$

 x_c = mixing layer centre

Maximum of the Skewness as a function of the energy ratio and of the time

Introduction

2D Velocity statistics Uniform kinetic

Passive scalar Mean Scalar Scalar momen

Stratified flo

Flow description Velocity moments Conclusion

—t/τ=1

-t/τ=10

-t/τ=20

 $(x-x_c^0)/\Delta$

Kurtosis

2D mixing

Kurtosis of the velocity component in the inhomogeneous direction for each energy ratio. $x_c = \text{mixing layer centre}$

Maximum of the kurtosis as a function of the energy ratio and of the time

Introduction

2D Velocity statis Uniform kinetic energy

Passive sca

Scalar mome

Conclusions

Stratified fit

Velocity moments

Uniform kinetic energy, inhomogeneous scale

Physica D, 2011 (in press).

Introduction

3D Velocity statistics 2D Velocity statistics

Uniform kinetic energy

Mean Scalar Scalar momen

Ctratified fla

Flow description Velocity moments

Energy gradient generation

Different decay exponents of the homogenous regions

 \Rightarrow generation of an *energy gradient*

3D Velocity statistic 2D Velocity statistic

Uniform kinetic energy

Passive scala Mean Scalar

Conclusions

Stratified flow Flow description

Velocity momen Conclusion

Velocity moments

Skewness vs. Kurtosis during the decay

3D Velocity statistic 2D Velocity statistic

Uniform kinetic energy

Passive scal Mean Scalar Scalar momer

Stratified flo

Flow description Velocity moment Conclusion

Velocity derivative

Longitudinal derivative Skewness and Kurtosis

Left (a-c): Filled symbols $\partial u/\partial x$, empty symbols $\partial v/\partial y$

3D Velocity statistics 2D Velocity statistics Uniform kinetic

energy

Passive scala Mean Scalar Scalar momen

Stratified fle

Flow description Velocity moments Conclusion

Velocity derivative

Longitudinal skewness vs. longitudinal kurtosis

Filled symbols $\partial u/\partial x$, empty symbols $\partial v/\partial y$

Conclusions

Uniform energy - inhomogeneous scale

- different scales generate different decays and then an energy gradient concurrent to the scale gradient
- the transient lifetime of the kinetic energy gradient is almost proportional to the initial scale ratio
- intemittency in the interaction layer grows as the flow decays
- anisotropy and intermittency are, with a certain lag, spread also to small scales
- small scale anisotropy: strong differentiation of the longitudinal skewness but no transversal skewness

3D Velocity statistic

Uniform kinetic

Passive scala

Mean Scalar
Scalar momen

Stratified flo

Flow description Velocity moment

Passive scalar

Basic phenomenology

- A passive scalar is a contaminant present in so low concentration that it has no dynamical effect on the fluid motion.
- Turbulence transports the scalar by making particles follow chaotic trajectories and disperses the scalar concentration if exists scalar concentration gradient.
- Fluctuations reach the smaller scales.

3D Velocity statistic 2D Velocity statistic

energy

r assive scale

Scalar mome

Stratified flo

Flow description Velocity moments

Passive scalar

Basic phenomenology

• at large scales:

- the mean concentration, variance and flux are strongly influenced by the boundary conditions and scalar injection
- at small scales:
 - scalar differences are not gaussian,
 - intermittency observed at inertial range scales as well as at the dissipation scales, with ramp/cliff structures

see, e.g.:

Warhaft *Ann.Rev.F.M.* 2000, Shraiman and Siggia, *Nature* 2000, Gotoh, *Phys.Fl.* 2006, 2007.

Passive scalar transport

We solve the passive scalar advection-diffusion equation

$$\frac{\partial \vartheta}{\partial t} + u_j \frac{\partial \vartheta}{\partial x_j} = \frac{(-1)^{n+1}}{Re \, Sc} \nabla^{2n} \vartheta$$

for the shearless mixing configuration with $E_1/E_2 = 6.6$, $\ell_1 = \ell_2$.

DNS simulations have been performed at $Re_{\lambda} = 150$ in 3D turbulence ($600^2 \times 1200$ grid points, n = 1) and $Re_{\lambda} = 60$ in 2D turbulence (1024 2 grid points, n = 2). Schmidt number Sc = 1

Introduction

3D Velocity statistics 2D Velocity statistics

Passive scalar

Mean Scalar Scalar moment

Stratified flo

Flow description Velocity moment

Passive scalar concentration

2D movie

3D movie

3D Velocity statistic

Uniform kinetic energy

Passive scal

Moon Scolar

Conclusions

Stratified flo

Velocity moments

Mean Scalar Diffusion

2D Mixing

3D Mixing

Energy ratio $E_1/E_2 = 6.6$

Scalar mixing layer thickness

Moon Scalar

Scalar layer thickness: $\Delta_{\vartheta} = x_{(\vartheta=0.75)} - x_{(\vartheta=0.25)}$

3D mixing: $\Delta_{\vartheta} \sim t^{0.46}$, 2D mixing: $\Delta_{\vartheta} \sim t^{0.68}$

10⁰

 t/τ

101

3D Velocity statistic

Uniform kinetic energy

Passive scalar

Scalar moments

Flow description Velocity moments

Scalar flux

2D Mixing

3D Mixing

$$\overline{u'\vartheta'} \sim 1/\Delta_{\vartheta}(t)$$

miroduction

2D Velocity statistics Uniform kinetic

Passive scala Mean Scalar

Scalar moments
Conclusions

Stratified flo

Flow description Velocity moments Conclusion

Scalar variance

3D Mixing

Self-similar distribution, peak shifted toward the high kinetic energy region

Scalar moments

Scalar skewness

-6

-2

energy flow

scalar flow

2D: intermittency penetrates more in the direction opposite to the energy gradient.

- Scalar moments

Scalar kurtosis

 $(x-x_c)/\Delta_{\theta}$

2D: higher asymmetry of the peaks. Intermittency gradually reduces as the mixing procedes

Introduction

2D Velocity statistic Uniform kinetic

Passive scala Mean Scalar

Scalar moments
Conclusions

Stratified flo

Velocity moments

Small scale intermittency

Scalar derivative skewness

2D Mixing

3D Mixing

2D: higher asymmetry of the peaks. Intermittency decay faster in 2D

- Introduction
- 2D Velocity statistics Uniform kinetic

Passive scal

Mean Scalar Scalar moments

Conclusions

Stratified flo

Velocity moments

Spectra in the mixing layer

Compensated scalar and velocity one-dimensional spectra in the same position

Passive scalar - Main remarks

Introduction
3D Velocity statistics
2D Velocity statistics
Uniform kinetic

Passive scalar
Mean Scalar
Scalar moment

Flow description Velocity moment Conclusion

- Growth rate: 2D flow : $(\Delta_{\vartheta} \sim \Delta_E \sim t^{0.68})$, 3D flow : $(\Delta_{\vartheta} \sim \Delta_F \sim t^{0.46})$.
- Self-similar profiles of first and second order moments. The scalar flow is about two times larger in 2D than in 3D. The scalar variance in the center of the mixing layer is 50% higher in 2D case.
- Large intermittency and non-gaussian behaviour on both sides of the mixing, even where the scalar flux is small.
- Larger asymmetry in moment distributions in 2D mixing.
- intermittency involves also the small scales
- inertial range spectra exponent: scalar: $3D \sim -5/3$, $2D \sim -1.4$, velocity: $3D \sim -5/3$, $2D \sim -3$

3D Velocity statistic 2D Velocity statistic Uniform kinetic energy

Passive scala Mean Scalar

Scalar momen Conclusions

Stratified flor

Flow description

Velocity moments Conclusion

Stratified flow

- We modify the experiment by adding the effect of a stable stratification
- We create an initial density field by combining two constant density fields

3D Velocity statistic
2D Velocity statistic
Uniform kinetic

Passive scala

Scalar momer

Charliffed fla

Flow description

Velocity moments Conclusion

Stratified flow

- We modify the experiment by adding the effect of a stable stratification
- We create an initial density field by combining two constant density fields

Density Field

Component Component

Flow description

Stratified flow

- We modify the experiment by adding the effect of a stable stratification
- We create an initial density field by combining two constant density fields

The fluctuation component has periodic boundary condition ⇒ The stability of the stratification is guaranteed

Formulation

Using the Boussinesq approximation the equations that describe the problem are:

$$\begin{split} \nabla \cdot \mathbf{u} &= \mathbf{0} \\ \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= -\frac{\mathbf{1}}{\rho_0} \nabla \mathbf{p} - \frac{\rho'}{\rho_0} \mathbf{g} + \nu \nabla^2 \mathbf{u} \\ \frac{\partial \rho'}{\partial t} + (\mathbf{u} \cdot \nabla) \rho' + \mathbf{v} \frac{d\rho_m}{d\mathbf{v}} &= \mathbf{k} \nabla^2 \mathbf{u} \end{split}$$

$$\nu = 2.4 \ 10^{-10} m^4 / s$$
, $k = 0.3 \ 10^{-2}$, $Sc* = (\nu / (k*l^2)) = 1.32 \ 10^{-4}$

Flow description

Formulation

Using the Boussinesq approximation the equations that describe the problem are:

$$\begin{split} \nabla \cdot \mathbf{u} &= \mathbf{0} \\ \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= -\frac{1}{\rho_0} \nabla \mathbf{p} - \frac{\rho'}{\rho_0} \mathbf{g} + \nu \nabla^2 \mathbf{u} \\ \frac{\partial \rho'}{\partial t} + (\mathbf{u} \cdot \nabla) \rho' + \mathbf{v} \frac{d\rho_m}{d\mathbf{y}} &= \mathbf{k} \nabla^2 \mathbf{u} \end{split}$$

$$\nu = 2.4 \ 10^{-10} m^4 / s$$
, $k = 0.3 \ 10^{-2}$, $Sc* = (\nu / (k * l^2)) = 1.32 \ 10^{-4}$

- The energy ratio is constant, $E_1/E_2 = 6.6$
- The parameter of the experiment is the Froude number

$$Fr = \frac{U}{\sqrt{-\frac{g}{\rho_0} \frac{\partial \rho_m}{\partial y}} L}$$

we considered: $Fr = \infty$ (no stratification), Fr = 10 (mild stratification), Fr = 0.1 (strong stratification) movie

Introduction

2D Velocity statistic Uniform kinetic energy

Passive scala Mean Scalar Scalar moment

Stratified flor

Flow description Velocity moments

Kinetic Energy

Introduction
3D Velocity statistic

2D Velocity statistics Uniform kinetic energy

Passive scalar
Mean Scalar
Scalar moments

Stratified flow Flow description Velocity moments Conclusion

Skewness 0.6 Fr=∞ $t/\tau=1$ Fr=∞ $t/\tau=5$ 0.6 Fr=10 Fr=10 0.4 Fr=0.1 Fr=0.1 0.4 0.2 S 0.2 -0.2-0.4-0.2-0.6 $(y-y_c)/\Delta$ $(y-y_c^0)/\Delta$ -5 5 -5 5 Fr=∞ $t/\tau=10$ Fr=∞ t/τ=20 0.4 0.4 Fr=10 Fr=10 0.3 Fr=0.1 Fr=0.1 0.2 0.2 S S 0.1 -0.2-0.1-0.2 -0.4-5 5 -5 5

 $(y-y_c)/\Delta$

 $(y-y_c)/\Delta$

Introduction 3D Velocity statisti 2D Velocity statisti

Passive scalar
Mean Scalar
Scalar moments

Stratified flow Flow description Velocity moments

Kurtosis

3D Velocity statistic

Uniform kinetic energy

Passive scalar
Mean Scalar
Scalar moment
Conclusions

Flow description Velocity moments Conclusion

Stratified flow - Main remarks

- For small Froude numbers it is formed a separation layer of zero vorticity
- The energy profile in the mixing region is lower than the minimum value imposed by the initial condition, which shows the effect of the buoyancy force work ⇒ Energy hole
- The velocity skewness enlightens the generation of an inverse energy flow and intermittent penetration from the low to the high energy field even in the case of mild stratification

