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The way in which kinetic energy is distributed   over a multiplicity of 

scales is a fundamental feature of turbulence. According to Kolmo-
gorov's 1941 theory, on the basis of a dimensional analysis, the only 

possible form of the energy spectrum function is the -5/3 spectrum. 

Experimental evidence has accumulated to support this law. Until 

now, this law has been considered a distinctive part of the nonlinear 
interaction specific to the turbulence dynamics. We show here that 

this picture is also present in the linear dynamics of three-dimensional 

stable perturbation waves. Through extensive computation of the 
transient life of these waves, in typical shear flows, we can observe 

that the energy they have when they leave the transient phase and 

enter into the final exponential decay, shows a spectrum that is very 
close to the -5/3 spectrum. The observation times also show a similar 

scaling. 

Basic flows. Transient computations 

We have considered a plane channel flow, as a typical example of wall flow, 

and plane wake flow, as a typical example of free flow. The base flows for 

the channel are represented by the Poiseuille solution and for the wake by 
the first two order terms of the Navier-Stokes asymptotic solution described 

in [1].  

An initial-value problem (IVP) for small arbitrary three-dimensional vorticity 

perturbations imposed on the basic shear flows is then considered.  

The exploration is conducted with respect to physical quantities, such as the 

polar wavenumber, the angle of obliquity, the symmetry of the perturbation, 
the flow control parameter, and, for the wake, which is not parallel, the po-

sition downstream of the body. 

(a) Base flows and perturbation 

scheme. The flow profiles are 

qualitatively represented in pink.  

The perturbation is represented 

by the blue and the yellow waves 

which propagate in the x and z 

directions, respectively. k is the 

wavenumber, φ is its inclination 

angle with respect to the basic 

flow. (b)-(c) Initial conditions and 

velocity profiles.  The gray and 

black lines in the wake panel (c) 

schematically show the velocity 

variation with the Reynolds num-

ber and the position in the wake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A collection of transients is presented for both the chan-

nel flow and the wake. (a and b): the magnitude of the 

wavenumber is fixed, while the obliquity and symmetry 

are allowed to vary. The insets highlight the typical for-

mation of time scales others than the flow external time 

scale and the wave period. (c and d) shows the tran-

sients variation with changes in the wavenumber mag-

nitude. Common trend: long waves can become unsta-

ble, but not for any obliquity angles; unstable perturba-

tions with an asymmetric initial condition have a much longer transient life 

To measure the growth of perturbations, 

we define the amplification factor, G, as 

the kinetic energy density normalized 
with respect to its initial value, 
 

G (t; α  γα  γα  γα  γ)=e (t; α , γα , γα , γα , γ)/e (t=0; α , γα , γα , γα , γ) 
 

Where e(t; α, γ) is the kinetic energy 

density. In terms of amplification fac-

tors, the early transient evolution offers 

very different scenarios for which we 
present a summary of particular cases.  
 

For example, we have observed two 

kinds of transients for amplified pertur-

bations, namely a monotone amplifica-

tion and a growth-decrease-final growth 

sequence.   
 

In the latter case, if the initial condition 

is an asymmetric oblique or longitudinal 

perturbation, the transient clearly shows 
an initial oscillatory time scale that is 

associated to a modulation in amplitude 

of the average value of the pulsation in 

the early transient (see the insets), and 

which is different from the asymptotic 

value of the pulsation [2].  
 

The most important parameters affect-

ing these configurations are the angle of 

obliquity, the symmetry, and the polar 

wavenumber. While the symmetry of the 

disturbance influences the transient be-
haviour and leaves the asymptotic fate 

unaltered, a variation in the obliquity.  

Spectrum determined by evaluating the energy of the waves when 

they are exiting their transient state. 
 

Regardless the symmetry and obliquity of perturbations, there exists 

an intermediate range of wavenumbers in the spectrum where the en-
ergy decays with the same exponent observed for fully developed tur-

bulent flows (-5/3), where the nonlinear interaction is considered 

dominant. 
 

Scale-invariance of G and Te at different (stable and unstable) Rey-

nolds numbers and for different shear flows. 
 

The spectral power-law scaling of inertial waves is a general dynami-

cal property which encompasses the nonlinear interaction. 
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Spectrum of the observation 

time  

We compare the energy of the waves in correspondence to the transition 

between the end of the transients and the settlement of the asymptotic 

condition. Assuming that the temporal asymptotic behaviour of linear per-
turbations is exponential, the temporal growth rate, r, can be defined as  

 

r (t; α, γα, γα, γα, γ)=(dG/dt)/G 
 

Thus, in an asymptotic condition r is approaching a real constant. Moreover 

we have selected the instants at which the amplification factor reaches a 
given rate of variation either in growth or in decay. This situation is repre-

sented by the instant, that we call observation time, Te, where   

dG/dt < ε or dG/dt > 1/ε, with ε = 10-n.  

The present results do not depend on the choice of n.  

Spectra of the amplification factor G for the collections 

of linear travellig waves.  

In panels (a) and (d) these spectral values are com-

pared to the corresponding spectra obtained in fully 

turbulent configurations studied experimentally in the 

laboratory or in numerical simulations [3, 4, 5, 6].  

 

 

It should be noted that this result appears strength-

ened: even the observation times, Te, present the 

same scaling. This outcome is not at all trivial. It is 
sufficient to consider that the observation time in-

cludes the transient, and that the different kind of 

transients we observed are very complex. 

 

The thus measured spectral values of G, show a scaling that is amazingly 

close to the turbulent canonical value of -5/3 for the intermediate polar 

wavenumbers (see figure below). 
 

For shorter wavelengths, characterized by very short transients, the scaling 

is a little higher in magnitude, approximatively equal to -2. This result does 

not appear to be influenced to any great extent by the wave obliquity, the 

symmetry, or the Re. 
 

However, it is possible to observe that purely orthogonal waves show a 
closer scaling to -2 than to -5/3, even at intermediate wavenumbers.  

Spectrum in asymptotic conditions 

Concluding remarks 
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Collective behaviour of linear perturbation wave  

observed through the energy density spectrum 

Collection of transient lives 


