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Introduction

Motivation and general aspects

Energy spectrum in fully developed turbulence

@ Phenomenology of turbulence Kolmogorov 1941:
—5/3 power-law for the energy spectrum over the inertial range;
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(left) Evangelinos & Karniadakis, JFM 1999. (right) Champagne, JFM 1978.
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Energy spectrum and linear stability analysis

@ We study the state that precedes the onset of instability and tran-
sition to turbulence:
e To understand how spectral representation can effectively highlight
the nonlinear interaction among different scales;
e To quantify the degree of generality on the value of the energy decay
exponent of the inertial range;

@ Different typical perturbed shear systems: plane Poiseuille flow
and bluff-body wake.
@ The set of small 3D perturbations:

o Constitutes a system of multiple spatial and temporal scales;

e Includes all the processes of the perturbative Navier-Stokes equa-
tions (linearized convective transport, molecular diffusion, linearized
vortical stretching);

o Leaves aside the nonlinear interaction among the different scales;

@ The perturbative evolution is ruled by the initial-value problem ;
associated to the Navier-Stokes linearized formulation.
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Motivation and general aspects

Spectral analysis through initial-value problem

@ The transient linear dynamics offers a great variety of different
behaviours (Scarsoglio et al., Stud. Appl. Math., 2009; Scarsoglio
et al.,, Phys. Rev. E, 2010):
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Introduction

Motivation and general aspects

Spectral analysis through initial-value problem

@ The transient linear dynamics offers a great variety of different
behaviours (Scarsoglio et al., Stud. Appl. Math., 2009; Scarsoglio
et al.,, Phys. Rev. E, 2010):
= Understand how the energy spectrum behaves;

@ Is the linearized perturbative system able to show a power-
law scaling for the energy spectrum in an analogous way to
the Kolmogorov argument?

@ We determine the energy decay exponent of arbitrary longitu-
dinal and transversal perturbations in their asymptotic states
and we compare it with the -5/3 Kolmogorov decay.
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Initial-value problem formulation

Perturbation scheme

@ Linear three-dimensional perturbative equations in terms of veloc-
ity and vorticity (Criminale & Drazin, Stud. Appl. Math., 1990);
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Initial-value problem formulation

Perturbation scheme

@ Linear three-dimensional perturbative equations in terms of veloc-
ity and vorticity (Criminale & Drazin, Stud. Appl. Math., 1990);
@ Laplace-Fourier transform in x and z directions, o complex, ~ real.
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Mathematical framework
wth
ient linear dynamics

Initial-value problem formulation

Perturbation scheme

@ Linear three-dimensional perturbative equations in terms of veloc-
ity and vorticity (Criminale & Drazin, Stud. Appl. Math., 1990);
@ Laplace-Fourier transform in x and z directions, o complex, ~ real.
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Initial-value problem formulation

sient linear dynamics

Perturbative equations

@ Perturbative linearized system:

PN
g—y\z/ - (K®—® 4 2iaqra)) 0 =T
or , RU, e 18,
i (iar — ai)(WV— ur) + Reloyz ~ (k= — of + 2iara;)l]
o . R . du . 1 920 . .
ail‘y = —(iar —aj)Usy — I'yd—yv + e 8y2y — (K — o2 + 2iaya;)dy]

The transversal velocity and vorticity components are ¥ and &,
respectively, [ is defined as T = 9y, — O,00x.

S. Scarsoglio, EPFDC 2011 Energy spectrum power-law decay of linearized perturbed shear flows



Initial-value problem formulation

sient linear dynamics

Perturbative equations

@ Perturbative linearized system:

PN
g—y\z/ - (K- oe,-z + 2iara)V =T
or , U, . 102 A
il (ler — a/)(WV —ur) + Relayz ~ (k% — o? 4 2iara;)f]
o . . . du . 1 920 , .
% = —(for —aj)Uoy — ”Ydfyv + Be ayzy — (K = of + 2iara;)dy]

The transversal velocity and vorticity components are ¥ and &,
respectively, [ is defined as T = 9y, — O,00x.

@ Initial conditions: symmetric and asymmetric inputs;

S. Scarsoglio, EPFDC 2011 Energy spectrum power-law decay of linearized perturbed shear flows



. . lathematical framework
Initial-value problem formulation

Perturbative equations

@ Perturbative linearized system:

20
g—y\z/ - (K- oe,-z + 2iaraj)0 =T
or , RU, e 18,
T (icer — ai)(WV - ur)+ Reloy? ~ (k* — af + 2iaroy)l]
o . R . adu 1 820 . R
8—ty = —(iar —aj)Usy — I'yd—yv + Re ayZy - (k2 — o¢,2 + 2iara)dy)

The transversal velocity and vorticity components are ¥ and &,
respectively, [ is defined as T = 9y, — O,00x.

@ Initial conditions: symmetric and asymmetric inputs;
@ Boundary conditions: (&, ¥, W) — 0 as y — +oco and at walls.
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. . Mathematical framework
Initial-value problem formulation

Perturbative equations

1 Wake flow ¢
1 ~ S
0.8
flow
0.6 4 08 ~—UW) —uy)
——asym input Re=10 ,x0=10 Re:30,x0:10
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@ Initial conditions: symmetric and asymmetric inputs;
@ Boundary conditions: (&, ¥, W) — 0 as y — +oco and at walls.
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Initial-value problem formulation

Perturbation energy

@ Kinetic energy density e:

T e o2 e
tian) = 5 [ (1aF+ |7+ |#wP)ay
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Initial-value problem formulation

Perturbation energy

@ Kinetic energy density e:
1 [ N N
tian) = 5 [ (1aF+ |7+ |#wP)ay

@ Amplification factor G:

_ _e(ta,y)
G(t,a,y) = m
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Initial-value problem formulation

Perturbation energy

@ Kinetic energy density e:
1 [ N N
tian) = 5 [ (1aF+ |7+ |#wP)ay

@ Amplification factor G:

G(t,a,y) = e(t; 2,7)

e(t=0;a,7)
@ Temporal growth rate r:
r(t;a,7) = 196
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Initial-value problem formulation

Perturbation energy

@ Kinetic energy density e:
+Yd

1 N N A
tian) = 5 [ (1aF+ |7+ |#wP)ay
—Ya

@ Amplification factor G:

G(t,a,y) = e(t; 2,7)

e(t=0;a,7)
@ Temporal growth rate r:
r(t:a7) = 19

@ Angular frequency (pulsation) w (Whitham, 1974):

w(t;a,y) = dng’X ¢ time phase
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Initial-value problem formulation e
eo

Variety of the transient linear dynamics

Relevant transient behaviours
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Perturbative system features
Results Spectral distributions

Spectral representation

@ The energy spectrum is evaluated as the wavenumber distribution
of the perturbation kinetic energy density, G(k);
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Perturbative system features
Results Spectral distributions

Spectral representation

@ The energy spectrum is evaluated as the wavenumber distribution
of the perturbation kinetic energy density, G(k);

@ The spectral representation is determined by comparing the
energy of the waves when they are exiting their transient
state;

@ Every perturbation has its characteristic transient exiting time, Tg;

@ The asymptotic condition is reached when the perturbative wave
exceeds the transient exiting time, T, that is when r ~ const is
satisfied for stable and unstable waves.

Scarsoglio, De Santi & Tordella, ETC XIII, 2011.
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Perturbat fez
Results Spectral distributions

Energy G(k) at the asymptotic state (r ~const)
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Results Spectral distributions

Pulsation w(k) at the asymptotic state (r ~const)
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Perturbat fez
Results Spectral distributions

Transient exiting time T,(k)
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for fully developed turbulent flows (—5/3), where the nonlinear
interaction is considered dominant;
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Conclusions

Conclusions

Concluding remarks

@ Spectrum determined by evaluating the energy of the waves when
they are exiting their transient state;

@ Regardless the symmetry and obliquity of perturbations, there ex-
ists an intermediate range of wavenumbers in the spectrum
where the energy decays with the same exponent observed
for fully developed turbulent flows (—5/3), where the nonlinear
interaction is considered dominant;

@ Scale-invariance of G and T, at different (stable and unstable)
Reynolds numbers and for different shear flows;

@ The spectral power-law scaling of inertial waves is a general
dynamical property which encompasses the nonlinear inter-
action;

@ The —5/3 power-law scaling in the intermediate range seems
to be an intrinsic property of the Navier-Stokes solutions.
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