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PHYSICS OF FLUIDS VOLUME 15, NUMBER 7 JULY 2003
A new matched asymptotic expansion for the intermediate and far flow
behind a finite body
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M. Belan
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An approximated Navier–Stokes steady solution is here presented for the two dimensional bluff
body wake region that is intermediate between the field on the body scaleLD , which includes the
two symmetric counter-rotating eddies, and the ultimate far wake. The nonparallelism of the
streamlines in the intermediate wake cannot yet be considered negligible. TheR is of the order of
the critical value for the onset of the first instability and the limiting behavior for largeR is not
considered. The solution is obtained by matching an inner solution—a Navier–Stokes expansion in
powers of the inverse of the longitudinal coordinate—and an outer solution, which is a Navier–
Stokes asymptotic expansion in powers of the inverse of the distance from the body. The matching
is built on the criteria that, where the two solutions meet, the longitunal pressure gradients and the
vorticities must be equal and the flow toward the inner layer must be equal to the outflow from the
external stream. At high orders in the inner expansion solution, the lateral decay turns out to be
algebraic. This approximate solution is here examined in relation to the class of asymptotic solutions
that, in the past, were obtained by adopting the rapid decay principle, which implies an irrotational
outer flow. The theme running through this paper is the necessity of the addition of this criterion to
the equations of motion to build a solution that describes the intermediate wake. The present
solution has been obtained by relaxing the imposition of the rapid decay principle. It can be
concluded that, at Reynolds numbers as low as the first critical value and where the nonparallelism
of the streamlines is not yet negligible, the division of the field into two basic parts—an inner
vortical boundary layer flow and an outer potential flow—is spontaneously shown up to the second
order of accuracy: at higher orders in the expansion solution the vorticity is first convected and then
diffused in the outer field. If exploited to represent the basic flow of bluff body wakes, the analytical
simplicity of this asymptotic expansion could be useful for the nonparallel analysis of the instability
of two-dimensional wakes. ©2003 American Institute of Physics.@DOI: 10.1063/1.1580482#
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I. INTRODUCTION

To analyze the nonparallel effects on the stability of tw
dimensional~2-D! wakes it could be advantageous to ha
an analytical description of the basic flow that is more ac
rate than the famous far field Gaussian asympto
representation1 and which is available in the intermedia
wake region at Reynolds numbers around the first crit
value.

In this paper a simple nonparallel Navier–Stok
asymptotic expansion is proposed for the intermediate
far wake, see Fig. 1. Apart from describing the streamw
momentum distribution, this expansion also describes
transversal momentum~hence the streamline curvature! and
pressure distributions and is valid at finite values of the R
nolds number of the order of the critical value for the on
of the first instability,R;20– 50. The term ‘‘intermediate’’ is
used in the general sense as given by Zeldovich
Barenblatt2 ~cf. the Preface, page xiii!. The recirculating
region,3–5 which, at relatively lowR, ranges on the body
scale and which, up toR5160, extends to dimensionsL
5O(R D)3W5O(R1/2D) (L5 length, W5width!, is not
1891070-6631/2003/15(7)/1897/10/$20.00
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included in this expansion. The idea that the solution p
posed here could be used as an accurate basic field fo
study of thenonparallel linear instability of 2-D wakes is
supported by the remarkable numerical experiment by Tri
tafyllou and Karniadakis,6 which proves that the details o
the flow separation from the body that generates the w
can be disregarded in wake-stability analyses.7 The steady
wake limiting behavior forR→` ~see, e.g., Fornberg,8

Chernyshenko,9,10 Peregrine11! is not considered in this stud
either.

According to the Oseen type of successive approxim
tions and with the adoption of the rapid decay principle
number of truncated expansion solutions were found.12–16

However, in the literature concerning wake instability, the
expansions were never used as basic flows to be pertur
presumably because of their analytical complexity due to
presence of logarithmic terms, which had to be included
maintain the exponential nature of the lateral decay.

On the other hand, it should be recalled that rapid de
has never been demonstrated even for the far wake, w
explains why it is used as~and called! a principle, see, for
7 © 2003 American Institute of Physics
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1898 Phys. Fluids, Vol. 15, No. 7, July 2003 D. Tordella and M. Belan
example, Stewartson~Ref. 13, p. 177!, Chang~Ref. 15, p.
834!, and Kida~Ref. 16, p. 949!. At the same time it is also
interesting to notice that similarity solutions, in which th
vorticity decays algebraically at the edge of the viscous in
layer, were shown to be possible limit solutions of fu
boundary-layer equations with exponential decay associ
with a potential outer flow.17

In view of the fact that, at low Reynolds number an
finite distances from the bluff body, a full Navier–Stok
solution is a more acceptable outer flow model, from a phy
cal point of view, than a potential solution, here it was d
cided to generalize the modeling of the inner and outer lay
and to free the analysis from the addition of any decay c
ditions. A matching of two asymptotic Navier–Stokes expa
sion solutions was sought for both the inner and the ou
layers at fixed Reynolds numbers. The inner layer solut
~Sec. II B! was built in terms of a near similarity expansio
in powers of the inverse longitudinal coordinate, see Be
and Tordella,18 where, in the framework of the boundar
layer model, an analog expansion solution was found up
any order of accuracy. The outer layer~Sec. II C! was built in
terms of powers of the inverse of the distance from the b
body that shapes the wake.

As the intermediate (x finite! steady two-dimensiona
wake at low Reynolds numbers (R&40) is a system in which
the dynamics consists of the transport, through nonlin
convection, and of the diffusion of vorticity, this latter qua
tity was chosen, rather than the velocity, as the phys
quantity on which to base the process of matching. The l
gitudinal pressure gradients generated by the flow and
entrainment velocities are also matched, see Sec. II A.
pressure effects in the inner layer have been considere
relevance whenever the transversal momentum bala
shows a pressure term of a magnitude that can be comp
with the diffusion and convection terms.

The synthetic list of the properties of the wake flo
which have here been taken into account and which were
taken into account in previous literature is presented in S
II. The terms of the expansion solution are presented u
the fourth order in Sec. III. A comparison between Chan
exponentially decaying asymptotic expansion and the pre
Navier–Stokes expansion solution, as applied to the fl

FIG. 1. Sketch of the regions of the laminar wake flow behind a 2-D b
body.
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past the circular cylinder, is presented in Sec. IV, toget
with a comparison of the experimental laboratory distrib
tions by Kovasznay19 and numerical distributions by
Berrone.20,21

The present investigation supports the argument that
lutions with algebraic lateral decay play a role that is on
apparently antithetical to that played by the exponentia
decaying expansions. It is in fact complementary, as it
relevant to a more extended portion of the wake field t
includes, apart from the far region where the decay beco
asymptotically exponential, the intermediate region wh
the Oseen approximation loses accuracy.

It should be recalled that, for the Navier–Stokes mo
in an exterior unbounded 2-D domain at Reynolds numb
as high as the critical value for the onset of the first insta
ity, properties of existence and uniqueness of the solu
have not yet been demonstrated, see the monograph
Galdi ~Ref. 22, Vol. II! and Ladyzhenskaya~Ref. 23!.

II. BASIC EQUATIONS AND THE PHYSICAL PROBLEM

For the incompressible viscous flow past a bluff bod
the nondimensional continuity and Navier–Stokes equati
are written in the form

u]xu1v]yu1]xp2R21 ¹2u50, ~1!

u]xv1v]yv1]yp2R21 ¹2v50, ~2!

]xu1]yv50, ~3!

where (x,y) are the longitudinal and normal coordinate
(u,v) the component velocities,p the pressure, andR
P@10,Rcr;40# the Reynolds number. The adopted adime
sionalization is based on the characteristic length of the fl
~a typical lengthD of the body that generates the wake!, the
densityr, and the velocityU of the free stream. Both the
outer and the inner flows are required to satisfy this mod
while no linearization is carried out. The specification of t
problem is then completed with the system of boundary c
ditions which excludes the portion of flow on the body sca
and involves symmetry to the longitudinal coordinate a
uniformity at infinity. Furthermore, there is a body of expe
mental knowledge that offers a particularly rich descripti
of the inner layer, which needs to be inserted into the r
evant boundary and matching conditions. For this purpo
the inner flow is required~i! to be a thin layer described b
the Navier–Stokes model,~ii ! to match its momentum de
fect, with respect to the incoming stream, to the body dr
i.e., to keep its momentum constant along thex direction,
and iii! to entrain external fluid,24 see the detailed presenta
tion of accessory conditions in the following section. T
outer flow is considered as a Navier–Stokes flow which sy
metrically wraps a thus characterized inner flow and at
same time accommodatesu→U,v→0,p→p` for y→6`.

The considered domain is composed of the intermed
and far wake

d,x,`; 2`,y,`, ~4!

where x is the standard longitudinal coordinate—with th
origin placed in the center of the body that generates

f

cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1899Phys. Fluids, Vol. 15, No. 7, July 2003 A new matched asymptotic expansion
wake—andd.0 is the distance, which decreases withR,
from the center of the body beyond which the thin sh
layer model becomes relevant. Functiond, nominally a func-
tion of both theR and the shape of the body, is a free para
eter. Its value, at fixedR, can in theory be obtained by mean
of the matching with the pre-asymptotic flow. It seems re
sonable to assume that the intermediate flow region begin
x5d. Thus, according to the definition of intermediate a
ymptotics,d should not depend to any great extent on
details of the actual shape. Distanced usually varies from
eight to four diameters forRP@20,40#).18,19 Both the origin
and the near wake, which includes the symmetrical adhe
vortices, fall outside the domain of our analysis. As a con
quence it is necessary to introduce field information t
gives one of the accessory conditions along thex coordinate,
as suggested by Stewartson,13 i.e., the profiles

u~x* ,y;R!5u* ~y;R!,

v~x* ,y;R!5v* ~y;R!, ~5!

p~x* ,y;R!5p* ~y;R!

of an experimental nature, which are both the result o
numerical simulation and of a laboratory measureme
placed in the intermediate field atx5x* . The second con-
dition alongx is the uniformity condition at infinity.

At this point, it is opportune to summarize the diffe
ences that characterize the present approach with respe
the previous literature.~i! The recognition of the existence o
the intermediate asymptotics. This is a very important point
as the existence of the intermediate region physically in
duces the adoption of the thin shear layer hypothesis,
relevant near-similar variable transformations for the in
flow, while, at the same time, it supports a differentiation
the behavior of the intermediate flow with respect to its
finite asymptotics.~ii ! The use of thein-field boundary con-
dition ~5! which has a higher degree of field information th
the mere use of integral quantities such as the drag or the
coefficients, which however are in turn included in~5!. ~iii !
The adoption of theinner as a basic approximation, whic
means that, up to first order, the inner solution is independ
of the outer solution. Coherently with this matching ord
the Navier–Stokes model, coupled with the thin layer h
pothesis, very naturally yields the order of the field press
variations O(x22), see Sec. II B. The pressure variatio
were usually overestimated atO(x21) in previous
studies,15,16 see also Sec. IV.~iv! The use of the Navier–
Stokes equations in all the considered field,without the ad-
dition of further restrictive axiomatic positions such as t
principle of exponential decay. This does not prevent
present solution from showing the properties of rapid de
and irrotationality at first and second order for the inner a
the outer flows, respectively. At the higher orders, wh
mainly influence the intermediate region, the decay beco
a fast algebraic decay. See Secs. III–V.
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A. Matching rules and structure of the expansion
solution

The matching on the pressure forces is not perform
directly on the pressure, but on its gradient, which is
actual quantity that the equations of incompressible mot
control. As the pressure is only differentiated once along
coordinates, only one condition can be considered. In or
to take into consideration that the flow nonparallelism i
plies a streamwise evolution of the field, we can impose

lim
y→0

]xpo5 lim
y→`

]xpi for x fixed, ~6!

where the subscripts indicate outer and inner variables,
spectively. Since the wake dynamics is mainly a balance
tween the convection and the diffusion of the vorticity whi
is generated at the body surface, it is considered physic
more significant to impose that the matching is on the v
ticity rather than on the velocity. In this manner restricti
conditions of irrotationality are not imposed on the ou
flow while, at the same time, an irrotational configuration
not a priori excluded for the outer flow. Hence forx fixed

lim
y→0

vo5 lim
y→`

v i . ~7!

To take the entrainment into account, it is necessary to ma
the outer and inner values ofv at the transition between th
outer and inner fields, which yields

lim
y→0

vo5 lim
y→`

v i for x fixed. ~8!

This set of simple matching rules is applied in the followin
whenever possible, when the limit values are both finite.
some occasions these rules are improved by using the li
ing behavior of the quantities being matched, which are w
ten as asymptotic expansions in the primitive independ
variablesx,y25 ~Sec. III!.

The structure of the inner and outer expansion soluti
is sought in the class of inverse coordinate expansions
satisfies the boundary conditions at infinity and allows
partial variable separation which leads to a sequence
linear systems of ordinary inhomogeneous differen
equations for the two groups of dependent variab
(ui ,v i ,pi),(uo ,vo ,po). For the inner layer, the quasi-simila
transformation is introduced,

j5x,h5x21/2y, ~9!

which assures the thinness of the inner domain. The in
duction of the expansion hypothesis

f i5 f i0~h!1x21/2f i1~h!1x21f i2~h!1••• ~10!

for the inner variables therefore allows the condition
x→` to be satisfied and, at the same time, the result
inhomogeneous differential systemIWn( f in ,h,]h ,]h

2)
5JW n( f i0 , . . . .,f i (n21) ,h,]h ,]h

2 ;R), obtained by introduc-
ing ~9! and~10! into Eqs.~1!–~3!, to be linear at each orde
This is possible because, at each order, the variable sep
tion implied by ~10!, though partial, leads the nonlinea
terms in~1! to include only the products of quantities of a
order of less thann, and these eventually end up in the i
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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homogeneous term. It should be noted that the expan
hypothesis~10!, which fixes the functional dependence of t
inner variables onx, actually makes the second relationsh
in ~5! useless, because, onceui(x,y) is known, v i(x,y) is
obtained by continuity. This is positive, since the experim
tal v profiles suffer from the inaccuracy that is associa
with the smallness of values relevant to a quantity which
usually much lower thanu. The quasi-similarity is due to the
fact that while each single term of~10! is self-similar, their
sum is not.

For the outer flow we introduce the variable transform
tion

r 5~x21y2!1/2, s5y/x ~11!

and the expansion hypothesis for the three (uo ,vo ,po) de-
pendent variables

f o5 f o0~s!1r 21/2f o1~s!1r 21f o2~s!1••• ~12!

which satisfy the asymptotic outer conditions at infinity.
~11! and~12! are introduced into~1!–~3!, both the nonlinear
and the diffusive terms include only quantities of orders
less thann21 at each order. Thus, all the nonlinear a
diffusion effects are confined to the inhomogeneous term
fact that reduces the differential order of the transform
equations by one and makes them linear. The new syste
therefore an inhomogeneous linear ordinary differential s
tem of the third order of the form:OW n( f on ,s,]s)
5PW n( f o0 , . . . ,f o(n21) ,s,]s ;R). The order of the inner sys
tem sums up to four, and as a consequence four constan
integration are introduced at each order. Two of these ca
determined through symmetry requirements. The outer
tem contains three constants of integration at each order.
latter constants, together with the two integration consta
obtained from the inner layer, are determined through
field boundary condition~5! ~fitted by the least square
method!—which is actually a double condition on the var
ablesu andp, since thev profile, according to the previou
discussion, is unnecessary—and the three matching co
tions ~6!–~8!. This set of conditions specifies the vector
application:MW

n :@Ci #n↔@Co#n that links the constants of in
tegration at each order.

B. Inner expansion

The inner expansion is defined in the region where

x.d~R! , uyu&Y~x! ⇒ y

x
→0 as x→`, y→` ,

~13!

whereY(x) is a representation of the boundary between
inner and the outer regions, which could almost be regar
as a parabola of the kindY 2}x, but which can only be
determineda posteriori. An inner expansion solution of th
Navier–Stokes equations~NS in what follows, NSx equation
along thex coordinate, NSy equation along they coordinate!
is defined for the wake region according to hypothesis~10!.18

The coordinate transformation~9! is here rewritten togethe
with the relevant spatial derivative tranformations:
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
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j5x, ]x5]j2 1
2 j21h]h ,

h5x21/2y, ]y5j21/2]h .
~14!

According to~10!, renamingj→x, the velocity and pressure
expansions are

ui5f0~h!1x21/2f1~h!1x21f2~h!1•••,

v i5x0~h!1x21/2x1~h!1x21x2~h!1•••,

pi5p0~h!1x21/2p1~h!1x21p2~h!1••• . ~15!

Some preliminary considerations must be introduced at
point. The structure of this expansion is such that continu
assuresx0[0. This fact is confirmed by the uniformity con
dition atx→`, which also determines the other two functio
cofficients at order zero:f0(h)51, p0(h)5p` /rU2.
From continuity it can also be verified thatx1(h)[0. Thus
the velocity componentv i5x21x2(h)1•••'O(x21). As a
general rule coefficientsxn may be obtained directly from
the continuity equation through the coefficientsfn21 .

By substituting the change of coordinates~14! and the
expansion form~15! in the NSx equation, a general ordinar
differential equation forfn , n>1, is obtained:

Ln fn[
1

R
fn91

h

2
fn81

n

2
fn5Mn , ~16!

where the inhomogeneous termMn is made up of three parts

Mn5Tn1Pg n1Sd n . ~17!

The first one,Tn , comes from the nonlinear term (u"¹)u in
the NSx equation. It can be seen thatT05T150, T2

52 1
2f1

2 and forn>3,

Tn52
n

4 (
i 51

n21

f ifn2 i1 (
i 51

n22 S 2
h

2
f i8fn2 i1f i8xn2 i D .

~18!

The termsPg n andSd n correspond to the pressure gradie
component]xp and the streamwise diffusion term]x

2u/R,
respectively. Their analytic expression can be deduced
substitution of expansions~15! in the NSx equation. Both
these terms become identically equal to zero at any orde
the simpler boundary layer model, where they may be c
sidered as high order Navier–Stokes corrections.18 Begin-
ning from this fact, the pressure variations have been con
ered to be effectively present in the field starting from t
order of accuracy, which assures the presence in they
equation of a pressure term that is comparable with at le
one of the convective and diffusive terms. On inspecti
assumingui511x21/2f11••• andv i5x21x2(h)1•••, the
NSy equation shows thatn53 is the lowest order, which
leads to a transversal pressure gradient of the same ord
the convective ~longitudinal! and diffusive ~transversal!
terms. Thus it may be supposed thatpi5p01x23/2p3(h)
1O(x22), i.e., ]ypi'O(x22). However, a check in the
NSy, written up to orders leading overO(x25/2), yields
p38(h)5x23/2((1/R) x291 5(h/2) x281x2)1O(x22). A
posteriori it is found that (1/R) x291 (h/2) x281x2[0,
which yields pi5p01x22p4(h)1O(x25/2),p15p25p3

50.
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1901Phys. Fluids, Vol. 15, No. 7, July 2003 A new matched asymptotic expansion
A comment is now opportune. As far as the press
effects are concerned, an alternative position could h
been to suppose thatpi5p01x21/2p1(h)1••• . In the case
in which the NSy yields p185p2850 and p38(h)
5x23/2((1/R) x291(h/2) x281x2)1O(x22), i.e., p1

5K1 ,p25K2 and p3(h)5K31*((1/R) x291(h/2& x28
1x2)dh, where now x25x2(h;K1). This position thus
leads to pi5p01K1x21/21K2x211p3x23/21O(x22).
From this one can infer that a field exists where, at the le
ing orders, the pressure varies conspicuously along thex di-
rection, while it is constant along the normal direction. T
significance of this scenario is considered physically qu
tionable, because in an unconfined wake—a flow where
pressure variation is introduced from the outside—the ou
field should not be able to impose strong longitudinal var
tions, inasmuch as it is simply the portion of the field whe
matching with the uniformity at infinity is obtained. More
over, due to the concomitant presence of a constant inho
geneous term in the differential equations for the coefficie
f1 andf2 , this pressure behavior would induce an anom
lous plateau in the central field of the outer velocity, which
turn induces anomalous high values in the central and o
shoot regions of the combined velocity field, which have n
been experimentally observed,5,19 see Fig. 5. The treatmen
adopted for the inner pressure field yieldsPg n50 for n
51,2,3 (Pg 050 for the condition at infinity!.

Independent of this, the streamwise diffusionSd 05Sd 1

5Sd 250, Sd 35(4R)21(3f115hf181h2f19). For n>4,
both theSd n andPg n terms are nonzero and it is possible
write them as functions off0 , . . . ,fn21 together with their
derivatives, which are quantities all known at the previo
orders. As a result the equations of motion are converted
a hierarchy of ordinary differential systems, which can
written as

f0850, Ln fn5Mn , n>1,

x0850, xn85
h

2
fn218 1

n21

2
fn21 , n>1,

~19!
pn850, n50,...,3;

pn85Pn~f0 , . . . ,fn21 , x0 , . . . ,xn21!, n>4,

where as previously seen, f051, x050, p0

5p` /(rU2), p15p25p350.
The first equation can be solved directly forfn ,18 lead-

ing to

fn~h!5Ane2 ~R/4! h2FCn 1F 1S 12n

2
,
1

2
;
R

4
h2D

1RHrn21~h!Fn~h!G , ~20!

where A is a factorization of theCn integration constants
~other constants are determined by the symmetry and bo
ary conditions at infinity!, 1 F 1 is the confluent hypergeo
metric function~Ref. 26, Vol. 1, pp. 427, 473, 475! functions

Hrn21(h)5Hn21( 1
2R

1/2h), where Hn are Hermite polyno-
mials, and
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Fn~h!5E e~R/4! h2

Hrn21
2 ~h!

Gn~h!dh, ~21!

Gn~h!5A2nE Mn~h!Hrn21~h!dh. ~22!

For n>3, these integrals can be evaluated numerically
approximated using special functions. Oncefn is known, the
second equation in~19! gives

xn5
h

2
fn211

n22

2
Fn21 ~23!

with Fn5*0
h fn(z)dz, where the constant of integratio

was determined by symmetry. Thepn are obtained by direc
integration of the relevant equation in~19!. The ordern50
does not foresee any dependence onx, the pressure is con
stant, and the relevant integration constantK0 is settled by
the boundary condition at infinity. Since the field variatio
of pi start to appear at the fourth order, the integration c
stantsK1 ,K2 ,K3 are set to zero.

C. Outer expansion

The outer expansion is defined in the region behind
body and outside the wake, i.e., the region where

x.d~R!, uyu*Y~x!⇒ y

x
→constÞ0 as x→`, y→` .

~24!

Since the left boundary of the whole domain lies behind
body, the outer region is made up of two symmetrically u
connected parts.

The adopted outer coordinate transformation~11! is here
rewritten, together with the relevant spatial derivative tra
formations:

r 5~x21y2!1/2, ]x5s2] r2~s s1 /r !]s ,
~25!s5y/x, ]y5s s2] r1~s1 /r !]s ,

where

s65~11s2!61/2 . ~26!

According to hypothesis~12!, the velocity and pressure ex
pansions are

uo5u0~s!1r 21/2u1~s!1r 21u2~s!1•••,

vo5v0~s!1r 21/2v1~s!1r 21v2~s!1•••, ~27!

po5p0~s!1r 21/2p1~s!1r 21p2~s!1••• .

By substituting in the NS equations, together with the con
nuity equation, a hierarchy of ordinary differential systems
obtained. The general system of ordern can always be rear
ranged as

un852
n

2
s2

2 ~un /s1vn1pn /s!1Un ,

vn852
n

2
s2

2 pn1Vn , ~28!

pn85
n

2
s2

2 vn1Pn ,
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whereUn , Vn , Pn are other inhomogeneous terms, made
of nonlinear combinations of u0 , . . . ,un21 , v0 , . . . ,
vn21 , p0 , . . . ,pn21 together with their derivatives. Thes
terms correspond to the nonlinear and diffusive terms of
original NS equations. The general solution of the syst
can be written as

un5kn1un11kn2un21kn3un3 , ~29!

vn5kn1vn11kn2vn2 , ~30!

pn5kn1pn11kn2pn2 , ~31!

where kni are the three integration constants at any giv
order.

III. TERMS OF THE EXPANSIONS

The inner and outer expansion terms, which are so
tions of systems~19! and~28!, are here listed up to the fourt
order. In the expansion, the integration constants,Cin

5A, C0 , . . . ,C4 , . . . ,K0 ,K4 , . . . for the inner region and
Con5kn1 ,kn2 ,kn3 for the outer region, are determined by th
boundary and matching conditions~5!–~8!. It is found that
the matching, at any given order, leads to a considera
simplification of the higher order system of equations. T
sequence of the general and simplified systems of equa
is given in Ref. 27. One should note that in the gene
system~28!, the nonlinear and viscous terms are always c
fined to the inhomogeneous termsUn , Vn , Pn , but actually
enter into the system, at the second (r 21) and third (r 23/2)
orders, respectively, whilst in the matched outer system,
Ref. 27, due to the peculiar simplification brought about
the matching, the nonlinear and viscous terms appear joi
only at the fifth order (r 25/2). However, the nonlinear an
the lateral diffusive effects are dominant in the inner lay
from the first order of accuracy (x21/2) and are accompanie
by the effects of the streamwise diffusion and pressure va
tion from the third and fourth order outwards, respective
The overall picture of the field is that of a nonlinear conve
tion and diffusion of vorticity in the inner layer transferred
the outer flow at a first step by a linear transport, which
active from the third to the fourth order, and at a second s
by the nonlinearity and diffusion processes activated fr
the fifth order onward.

A. Order 0

Inner terms~orderx0):

f05C0 , ~32!

x050, ~33!

p05K0 . ~34!

Outer terms~order r 0):

u05k03, ~35!

v05k02, ~36!
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Both the inner system and the outer system have gen
solutions of the kindu5const,v5const,p5const. At this
order, the matching conditions are trivially satisfied, and
correct solutions are directly determined by the bound
conditions at infinity: thus,C051,K05k015p` , wherep`

5p` /(r`U2), k0250,k0351.

B. First order

Inner terms~orderx21/2):

f152AC1e2 ~R/4! h2
, ~38!

x150, ~39!

p150. ~40!

These terms give the well-known asymptotic Gauss
solution.1,24,28 The function coefficientsf1 and x1 tend to
zero exponentially ash→`. ConsideringC1521, the fac-
torization constantA is given by the boundary condition~5!
and theu distribution atx5x* . Since the momentum defec
in the wake does not depend onx this is equivalent to ob-
taining the value ofA from the bluff body drag coefficien
cD , which results inA(R)5 1

4(R/p)1/2cD(R). Coefficients
x1 andp1 vanish identically, as can be seen from Eqs.~19!
and ~23!.

Outer terms~order r 21/2):

u15 ik11

s1
3/2~11 is!1/2

3 s ~s1 i !
2 ik12

s1
5/2~11 is!1/2

3 s ~s2 i !2
1k13

s1

s
,

~41!

v15e~ i /2! arctan(s)S k111k12

s1

s2 i D , ~42!

p15 ie~ i /2! arctan(s)S 2k111k12

s1 i

s1
D . ~43!

Here the outer pressure in the inner limity→0 gives
(]p/]x)o; 1

2( ik111k12)1O(y), which immediately leads to
k1252 ik11. At this order, it can be seen that the inn
vorticity vanishes exponentially, but a check on the ou
vorticity behavior in the inner limit y→0 shows
that vo;(2k11/31k13) x1/2y222(5k11/121k13/4) x23/2

1O(y2), therefore one setsk1352(2/3)k11, and obtains
vo;2(k11/4) x23/21O(y2). This leads tok1150, which
gives the correct matching with the relevant inner ter
Thus, the only acceptable physical solution is defined
k115k125k1350. The entrainment matching condition onv
is also trivially satisfied and yields

u150, v150, p150. ~44!

C. Second order

Inner terms~orderx21):
cense or copyright; see http://pof.aip.org/about/rights_and_permissions
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f25A2e2 ~R/4! h2FC21 F 1S 2
1

2
,
1

2
;
R

4
h2D1e2 ~R/4! h2

1
1

2
ApR h erfSAR

2
h D G , ~45!

x252
A

2
he2 ~R/4! h2

, ~46!

p250. ~47!

As h→`, it can be shown thatf2 has an exponential deca
whenC250, otherwisef2;h22; the behavior ofx2 is x2

→0 exponentially.
Outer terms~order r 21).
The relevant system has the general solution

u25k21s21k22

s2

s
1k23

s1

s
, ~48!

v25k21ss21k22s2 , ~49!

p25k22ss22k21s2, ~50!

so that the inner behavior of the outer pressure is (]px)o

;k21x
221O(y), therefore one setsk2150. At this order, the

inner vorticity vanishes exponentially ifC250, otherwise
v i; constC2 y231O(y2`). The outer vorticity behavior in
the inner limit isvo;(k221k23)y221O(y3), therefore the
only correct matching is given byC250 in the inner expan-
sion andk2352k22 in the outer. Therefore, in order to de
termine the value ofk22, one checks the behavior of th
outer velocityvo in the inner limit:vo5v2 /r;k22/x. Since,
at the same order,v i;0, it follows that k2250, thus k21

5k225k2350 and

u250, v250, p250. ~51!

D. Third order

Inner terms~orderx23/2):

f35A3e2 ~R/4! h2
~22Rh2!F1

2
C32RF3~h!G , ~52!

x35
A2

2 H C2F E e2 ~R/4! h2

1F 1S 2
1

2
,
1

2
; ~R/4! h2Ddh

1
1

2
he2 ~R/4! h2

1F 1S 2
1

2
,
1

2
; ~R/4! h2D G

1
1

2
h e2 ~R/2! h2

1A p

2R
erfSAR

2
h D

2SAp

R
2

ApR

4
h2D e2 ~R/4! h2

erfSAR

2
h D J , ~53!

p350. ~54!

Here, we havef3;h23 and x3;x3 `5A2/2Ap/(2R) as
h→`. In f3 , the constantC3 is determined by the bound
ary condition atx5x* . In x3 , the constantC2 is zero as
determined at the previous order.
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
Outer terms~order r 23/2): the general solution of the
relevant system is

u35
i

3
k31e~3 i /2! arctan(s)1k33

s1
3/2

s3/2
1

1

2
k32s23/2s1

3/2

35 A~11 i s! s S 3

4
2

i

i 1sD
2 ~ i 1s!

1
~21!1/4

16A2
log

3F S i 21

A2
1AsD S i 21

A2
2~12 i ! A11 i s1AsD

S 12 i

A2
1AsD S 12 i

A2
1~12 i ! A11 i s1AsD G 6 ,

~55!

v35e~3/2! iarctan(s)Fk311k32s1

s1 i

3~s2 i !2G , ~56!

p35e~3/2! iarctan(s)F2 ik312k32s2

~s1 i !2

3~11 is!G . ~57!

Here the inner behavior of the outer pressure is (]p/]x)o

; 1
2(3ik312k32)x

25/21O(y), which givesk3253ik31. The
outer limit of the inner vorticity is nowv i;~const! x25/2

1O(y24), while the behavior of the outer vorticity in th
inner limit is of the kind vo;(3k33/2)y25/2

1~const! k31x
25/21O(y). The correct matching is obtaine

by settingk3350, which givesvo;~const!k31x
25/21O(y).

Finally, in order to determine the value ofk31, one can look
at the behavior of the outer velocityvo in the inner limit:
vo;k31x

23/2. The outer limit of the inner velocityv, at the
same order, isv i;x3 `x23/2, therefore one obtainsk31

56 1
2x3 ` , where the sign changes withy, sincev is anti-

symmetric.

E. Fourth order

Inner terms~orderx22):

f452A4e2~R/4! h2FC4 1F 1S 2
3

2
,
1

2
;
R

4
h2D

1R3/2h~Rh226!F4~h!G , ~58!

x45
h

2
f31F3 , ~59!

p45E S 1

R
x391

h

2
x381

3

2
x31f1x2Ddh1K4 . ~60!

Here, and in general forn>3, we havefn→0 with algebraic
decay andxn→ constÞ0 ash→`. The behavior ofp4 is
instead divergent: one in fact hasp4; ~const!h1K4 ~but
the matching inner expansion of the outer term has the
rect behavior, see the following!. The constantsC4 and K4

are determined by the boundary condition~5!.
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Outer terms~order r 22):

u452k41s s2
2 2

1

2
k42

3s211

s2s1
2

1k43

s1
2

s2
, ~61!

v45k41s2
2 ~s221!2k42ss2

2 , ~62!

p45
1

2
k42s2

2 ~12s2!22k41ss2
2 . ~63!

The behavior of the pressure gradient in the inner limit
now ]xpo;2k42x

231O(y), while the outer behavior of the
inner pressure is]xpi; ~const!y1K4x23, therefore one
sets k4252K4 . The comparison between the vorticitie
gives vo;(k4212k43)y231@(const)k311O(x21/2)]x25/2

1O(y) in the inner limit and v i;@(const)
1O(x21/2)]x25/21O(y24) in the outer limit. Thus,k43

52k42/2. Finally, the comparison between the lateral v
locities gives vo;2k31x

23/22k41x
221O(x25/2) and v i

;x3 `x23/21x4 `x221O(x25/2), therefore one obtainsk41

56x4 ` .

IV. TEST: THE CIRCULAR CYLINDER WAKE

The matched asymptotic expansion for the intermed
and far wake behind the circular cylinder can be determi
by setting the inner and outer coefficients according to
boundary and matching conditions~5!,~6!–~8! as discussed
in Sec. III. In particular it is important to use the experime
tal field information, as already mentioned by Stewartson
1957,13 fixing the flow distributions at a given section of th
intermediate region see Sec. II@~4! and ~5!#. The inner and
outer expansions are then used to form the composite ex
sion f c n—which, by construction, is continuous and diffe
entiable over the whole domain—acccording to the r
f c n5 f i n1 f o n2( f o n)

i n, where (f o n)
i n is the common part

of f i n and f o n , that can be calculated as the inner expans
of the outer expansion, or vice versa.

The inner, outer, and composite distributions of the
locity components and pressure, atR534 and at twenty di-
ameters downstream to the circular cylinder, are shown
Figs. 2, 3, and 4. Note that, in Fig. 2, it has been necessa
use a very enlarged ordinate scale to present the matc
betweenui anduo , which would not be visible otherwise.

In a previous work,18 the wake—the inner field of the
present problem—was studied through the boundary la
model. This simpler model allows the general order term
the expansion to be analytically determined. In this case,
pressure field is a uniform field, this being a limiting featu
of the model. On the other hand the entrainment is v
efficiently accounted for by the outer limit of thev field
which has nonzero values very close to those issued by
Navier–Stokes model. On the contrary, seeking the solu
in terms of matched NS expansions allows the lateral va
tions of the outerv field as well as the longitudinal an
lateral variations of both the inner and outer pressure fiel
be obtained. See Fig. 5 for a comparison of the two mod
at x520,40D and R534. In the case of the matche
asymptotic expansion, it is interesting to observe that
inner NS pressure field is just of the fourth order@i.e.,
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
s

-

te
d
e

-
n

n-

e

n

-

in
to
ng

er
f
e

y

he
n
-

to
ls

e

O(x22)] and diverges at its outer limit, which makes th
matching process with an outer field absolutely necessar

Coming back to the matched solution for the longitud
nal velocity component, it is possible to find, in Fig. 6,
comparison with:~1! the asymptotic matched solution b
Chang,15 ~2! the experimental distribution by Kovasznay,19

~3! the numerical distribution by Berrone.20,21 Chang’s solu-
tion, being the one that reaches the highest order of accu
in both the inner and outer approximations, is here assum
as the reference for the ensemble of expansion solut
based on the rapid decay principle. It should be recalled
the latest one~Kida, 1984!,16 which was obtained under th
same body of assumptions and which results in the sa
sequence of terms, is one order of accuracy lower t
Chang’s solution.

As can be seen in Fig. 6, the present matching turns
to be efficacious, contrasting positively with both the expe
mental and numerical profiles. Chang’s results however
not fully agree with these distributions. This is due to t

FIG. 2. R534, x/D520. Details of the matching betweenui ~thin line! and
uo ~dotted line! and of the compositeuc ~thick line! expansion solution.
Fourth order of accuracy.

FIG. 3. R534, x/D520. Matching betweenv i ~thin line! and vo ~dotted
line!; compositevc ~thick line! present expansion solution. Fourth order
accuracy.
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presence, in his inner expansion, of a term const/2px inside
the group of terms atO(e1/2). Heree is the small artificial
parameter used by Chang in his expansion, which may
eliminated from the problem by reformulating it in terms
the physical coordinates. Chang’s term stems from the

FIG. 4. R534, x/D520. Matching betweenpi2pinf ~thin line! and po

2pinf ~dotted line!; compositepc ~thick line! present expansion solution
Fourth order of accuracy.

FIG. 5. R534, x/D520,40. Comparison between the boundary layer
pansion~Ref. 18! and the present matched solution. Thick lines:x520, thin
lines: x540. Full lines: BL profiles; NS–NS matched solution: inner pre
sure and composite profiles. Broken lines: outer profiles. The diamond
data by Kovasznay~1948! ~Ref. 19!, which are, even these days, the on
source of experimentalu velocity profiles for the intermediate region of th
steady circular cylinder wake. The Kovasznay data do not include infor
tion on the lateral velocity and the pressure.
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
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s-
sumption that the field can accommodate an inner pres
which is independent of the lateral coordinate, which ho
ever varies at the leading orders along thex coordinate. Ac-
cording to Chang, the presence of this term should not b
problem because it is also common to the outer solution
the matching, it is subtracted from the inner expansion,
only remains in the outer expansion, hidden inside terms
const/2pz, which, in the outer limitz→`, z5x1 iy , tends
to zero. However, at intermediate values ofy and for fixedx,
this type of term is responsible for an anomalous rise in
composite expansion, due to the central plateau tha
present in the outer expansion. This is visible in the plots
Fig. 6, where, inside the interval (210,y,10), the present
expansion is compared to Chang’s third-order approxima
@O(e3/2)#, which is equivalent toO(x23/2) and toO(r 23/2)
for the present inner and outer expansions, respectively
Fig. 6 Chang’s distributions clearly show the presence of
term e(const/2px), which biases the outer solution at finit
values ofx to values greater than 1 and forces the compo
expansion to assume inaccurate values mostly in the re
aroundy/D'2 and outwards~at y/D520 the longitudinal
velocity is still appreciably different fromU).

Other remarks could be made. Chang’s matching is
rectly conducted on the velocity and pressure and someti
also on the stream function. The terms of the outer expan
are obtained from those of the inner expansion through a
lytical extrapolation~the principle of eliminability of the ar-
tificial parametere coupled to a switchback procedur
which, however, has not been generalized for terms invo
ing loge) but these terms were not checked to be solution
the various orders of the outer flow equations~which were
not presented in the aforementioned paper!. In spite of the
fact that the inner expansion is forced to assume a lat
exponential decay, the higher order terms~e.g., the order

-

re

-

FIG. 6. R534, x/D520. Comparison of the present~outer and composite!,
Chang’s ~outer and composite!, Kovasznay’s experimental and Berrone
numerical longitudinal velocity distributions. The field information, cond
tion ~5!, see Sec. II A, for the present solution and coefficientsm,a2 ,c2 for
Chang’s solution~Chang, 1961!, has been inserted using the tabulated d
set in Kovasznay~1948!, which is, even these days, one of the riche
sources of experimental velocity profiles for the steady circular cylin
wake.
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e3/2) of the outer expansion are rotational. Presuma
Chang just expected irrotationality for the sum of the ter
of the whole outer asymptotic expansion. However, leav
aside the problem of proof, which probably cannot be fou
it should be recalled that an unavoidable truncation affe
any actual approximation.

V. CONCLUSIONS

A Navier–Stokes inverse coordinate expansion solut
is here presented for steady two-dimensional wakes of b
bodies. It is a matching between inner and outer Navi
Stokes asymptotic expansions calculated behind the bod
the domaind,x,`, 2`,y,`, where d5d(R) is the
suitable left limit of the intermediate asymptotics of the fie
In this region the wake can be considered a thin layer. T
approximated solution was sought in the range of Reyno
numbers close to the critical value for the onset of the fi
instability and for the intermediate part of the flow where t
nonparallelism of the streamlines is still appreciable and,
consequence, the convection terms in the equation of mo
should not yet be linearized, as instead is the case in
Oseen representation of the far wake. The expansion solu
also holds for the far wake which asymptotically coincid
with the Gaussian representation, which is an Oseen s
tion. The new solution presented here exhibits two prop
ties: ~i! analytical simplicity, which makes a simple but d
tailed basic flow available for the study of the instability
the nonparallel portion of bluff body wakes, and~ii ! good
agreement with experimental data. Nevertheless, the m
important result concerning this solution is, in the autho
opinion, the fact that it has been obtained by relaxing
exponential decay principle for the inner layer, whose ad
tion to the governing equations, on one hand, restricts t
generality, while on the other makes the introduction of log
rithmic terms in the expansion necessary. The present
proach, however, did not prevent the matching, which w
based on criteria that involve the joining of the longitudin
pressure gradient, vorticity, and entrainment velocity, fro
spontaneously showing the properties of rapid decay an
rotationality at the first and second orders of accuracy for
inner and the outer flows, respectively. At the higher ord
this approach leads to a fast algebraic decay of the in
layer and to an outer flow, which, up to the orderr 22, lin-
early convects momentum and, from the orderr 25/2, nonlin-
early convects and diffuses it.

AKNOWLEDGMENT

Thanks are due to Professor J. T. Stuart for his kind
useful suggestions.
Downloaded 13 Mar 2012 to 130.192.25.44. Redistribution subject to AIP li
y
s
g
,

ts

n
ff
–
in

.
e
s
t

a
on
he
on

lu-
r-

st
’
e
i-
ir
-
p-
s
l

ir-
e
s
er

d

1W. Tollmien, ‘‘Grenzschichten,’’Handbuch der Exper. Physik4, 241
~1931!.

2G. I. Barenblatt,Scaling, Self-similarity, and Intermediate Asymptoti
~Cambridge University Press, Cambridge, 1996!, cf. Preface, p. xiii.

3B. Fornberg, ‘‘A numerical study of steady viscous flow past a circu
cylinder,’’ J. Fluid Mech.98, 819 ~1980!.

4F. T. Smith, ‘‘Laminar flow of an incompressible fluid past a bluff bod
The separation reattachment, eddy properties and drag,’’ J. Fluid Mech92,
171 ~1979!.

5M. Nishioka and H. Sato, ‘‘Measurements of velocity distributions in t
wake of a circular cylinder at low Reynolds numbers,’’ J. Fluid Mech.65,
97 ~1974!.

6G. S. Triantafyllou and G. E. Karniadakis, ‘‘Computational reducibility
unsteady viscous flows,’’ Phys. Fluids A2, 653 ~1990!.

7P. Huerre and P. A. Monkewitz, ‘‘Local and global instabilities in spatia
developing flows,’’ Annu. Rev. Fluid Mech.22, 473 ~1990!.

8B. Fornberg, ‘‘Steady viscous flow past a circular cylinder up to Reyno
number 600,’’ J. Comput. Phys.61, 297 ~1985!.

9S. I. Chernyshenko, ‘‘The asymptotic form of the stationary separa
circumfluence of a body at high Reynolds number,’’ J. Appl. Math. Me
52, 746 ~1988!.

10S. I. Chernyshenko, ‘‘The asymptotic form of the stationary separa
circumfluence of a body at high Reynolds number,’’ Fluid Dyn.30, 28
~1995!.

11D. H. Peregrine, ‘‘A note on the steady high-Reynolds-number flow ab
a circular cylinder,’’ J. Fluid Mech.157, 493 ~1985!.

12S. Goldstein, ‘‘On the two-dimensional steady flow of a viscous fluid
Proc. R. Soc. London, Ser. A142, 545 ~1933!.

13K. Stewartson, ‘‘On asymptotic expansions in the theory of bounda
layers,’’ J. Math. Phys.36, 173 ~1957!.

14I. Imai, ‘‘On the asymptotic behaviour of viscous fluid flow at a gre
distance from a cylindrical body, with special reference to Filon’s pa
dox,’’ Proc. R. Soc. London, Ser. A208, 487 ~1951!.

15I. Chang, ‘‘Navier–Stokes solutions at large distances from a finite bod
J. Math. Mech.10, 811 ~1961!.

16T. Kida, ‘‘A new perturbation approach to the laminar fluid flow behind
two-dimensional solid body,’’ SIAM~Soc. Ind. Appl. Math.! J. Appl.
Math. 44, 929 ~1984!.

17N. Brown and K. Stewartson, ‘‘On similarity solutions of the boundar
layer equations with algebraic decay,’’ J. Fluid Mech.23, 673 ~1965!.

18M. Belan and D. Tordella, ‘‘Asymptotic expansions for two-dimension
symmetrical laminar wakes,’’ Z. Angew. Math. Mech.82, 219 ~2002!.

19L. S. G. Kovásznay, ‘‘Hot-wire investigation of the wake behind cylinde
at low Reynolds numbers,’’ Proc. R. Soc. London, Ser. A198, 174~1948!.

20S. Berrone, ‘‘Adaptive discretization of differential models in fluid dynam
ics,’’ Ph.D. dissertation, Politecnico di Torino, 2001.

21S. Berrone, ‘‘Adaptive discretization of stationary and incompressi
Navier–Stokes equations by stabilized finite element methods,’’ Com
Methods Appl. Mech. Eng.190Õ34, 4435~2001!.

22G. P. Galdi,An Introduction to the Mathematical Theory of the Navier–
Stokes Equations, Nonlinear Steady Problems, Vol. 2~Springer, Berlin,
1998!.

23O. A. Ladyizhenskaya,The Mathematical Theory of Viscous Incompres
ible Flows ~Gordon and Breach, New York, 1969!.

24H. Schlichting,Boundary-Layer Theory~McGraw–Hill, New York, 1979!.
25M. Van Dyke,Perturbation Methods in Fluid Mechanics~Parabolic, Stan-

ford, 1975!.
26E. Kamke,Differentialgleichungen~Teubner, Stuttgart, 1977!.
27See EPAPS Document No. E-PHFLE6-15-016307 for ‘‘Appendix: Ou

expansion equations: A. Complete equation sytsems: B. System
matched equation.’’ A direct link to this document may be found in t
online article’s HTML reference section. The document may also
reached via the EPAPS homepage~http://www.aip.org/pubservs/
epaps.html! or from ftp.aip.org in the directory /epaps/. See the EPA
homepage for more information.

28G. K. Batchelor,An Introduction to Fluid Dynamics~Cambridge Univer-
sity Press, Cambridge, 1967!.
cense or copyright; see http://pof.aip.org/about/rights_and_permissions


