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A new matched asymptotic expansion for the intermediate and far flow
behind a finite body
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An approximated Navier—Stokes steady solution is here presented for the two dimensional bluff
body wake region that is intermediate between the field on the body Isgal@vhich includes the

two symmetric counter-rotating eddies, and the ultimate far wake. The nonparallelism of the
streamlines in the intermediate wake cannot yet be considered negligibl® iShef the order of

the critical value for the onset of the first instability and the limiting behavior for l&de not
considered. The solution is obtained by matching an inner solution—a Navier—Stokes expansion in
powers of the inverse of the longitudinal coordinate—and an outer solution, which is a Navier—
Stokes asymptotic expansion in powers of the inverse of the distance from the body. The matching
is built on the criteria that, where the two solutions meet, the longitunal pressure gradients and the
vorticities must be equal and the flow toward the inner layer must be equal to the outflow from the
external stream. At high orders in the inner expansion solution, the lateral decay turns out to be
algebraic. This approximate solution is here examined in relation to the class of asymptotic solutions
that, in the past, were obtained by adopting the rapid decay principle, which implies an irrotational
outer flow. The theme running through this paper is the necessity of the addition of this criterion to
the equations of motion to build a solution that describes the intermediate wake. The present
solution has been obtained by relaxing the imposition of the rapid decay principle. It can be
concluded that, at Reynolds numbers as low as the first critical value and where the nonparallelism
of the streamlines is not yet negligible, the division of the field into two basic parts—an inner
vortical boundary layer flow and an outer potential flow—is spontaneously shown up to the second
order of accuracy: at higher orders in the expansion solution the vorticity is first convected and then
diffused in the outer field. If exploited to represent the basic flow of bluff body wakes, the analytical
simplicity of this asymptotic expansion could be useful for the nonparallel analysis of the instability
of two-dimensional wakes. @003 American Institute of Physic§DOI: 10.1063/1.1580482

I. INTRODUCTION included in this expansion. The idea that the solution pro-
posed here could be used as an accurate basic field for the
To analyze the nonparallel effects on the stability of two-study of thenonparallel linear instability of 2-D wakes is
dimensional(2-D) wakes it could be advantageous to havegypported by the remarkable numerical experiment by Trian-
an analytical description of the b_asic flow thgt is more aCCutafyllou and Karniadaki§€,which proves that the details of
rate than the famous far field Gaussian asymptoliGhe fio\ separation from the body that generates the wake

representatiohand which is available in the intermediate can be disregarded in wake-stability analys@he steady
wake region at Reynolds numbers around the first Critica!/vake limiting behavior forR—o (see, e.g., Fornbef

value. 10 . . . .
In this paper a simple nonparallel Navier—StokesCi?;:yShenk& Peregriné) is not considered in this study

asymptotic expansion is proposed for the intermediate and A ding to the O ¢ ¢ . :
far wake, see Fig. 1. Apart from describing the streamwise, ceording fo the Lseen type of Successive approxima-

momentum distribution, this expansion also describes thgOnS and with the adoption 9f the faP'd decay pnrj:%péée, a
transversal momenturthence the streamline curvatirend ~ "Umber of truncated expansion solutions were fotind:

pressure distributions and is valid at finite values of the ReyHowever, in the literature concering wake instability, these
nolds number of the order of the critical value for the onseteXpansions were never used as basic flows to be perturbed,
of the first instability,R~20—50. The term “intermediate”is Presumably because of their analytical complexity due to the
used in the general sense as given by Zeldovich an@resence of logarithmic terms, which had to be included to
Barenblatt (cf. the Preface, page xiii The recirculating maintain the exponential nature of the lateral decay.
region®~° which, at relatively lowR, ranges on the body On the other hand, it should be recalled that rapid decay
scale and which, up t&k=160, extends to dimensiorls  has never been demonstrated even for the far wake, which
=0O(RD)XxW=0(RY?D) (L= length, W=width), is not explains why it is used agand called a principle, see, for
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y Dl past the circular cylinder, is presented in Sec. IV, together

----- outer region with a comparison of the experimental laboratory distribu-

""" Yl

i tions by Kovasznay and numerical distributions by
ey Berrone?®?

The present investigation supports the argument that so-
lutions with algebraic lateral decay play a role that is only
apparently antithetical to that played by the exponentially
decaying expansions. It is in fact complementary, as it is
relevant to a more extended portion of the wake field that
includes, apart from the far region where the decay becomes
asymptotically exponential, the intermediate region where
NEAR ::::: INTERMEDIATE FAR the Oseen approximation loses accuracy.

WAKE WAKE WAKE It should be recalled that, for the Navier—Stokes model

FIG. 1. Sketch of the regions of the laminar wake flow behind a 2-D biuff iN @n exterior unbounded 2-D domain at Reynolds numbers

body. as high as the critical value for the onset of the first instabil-
ity, properties of existence and uniqueness of the solution
have not yet been demonstrated, see the monographs by

example, StewartsofRef. 13, p. 177, Chang(Ref. 15, p.  Galdi (Ref. 22, Vol. Il) and LadyzhenskayéRef. 23.

834), and Kida(Ref. 16, p. 949 At the same time it is also

mtere_stlng to notice thz_;\t similarity solutions, m_whlch _the Il. BASIC EQUATIONS AND THE PHYSICAL PROBLEM
vorticity decays algebraically at the edge of the viscous inner

inner region

layer, were shown to be possible limit solutions of full For the incompressible viscous flow past a bluff body,
boundary-layer equations with exponential decay associateitie nondimensional continuity and Navier—Stokes equations
with a potential outer flov’ are written in the form

In view of the fact that, at low Reynolds number and
finite distances from the bluff body, a full Navier—Stokes
solution is a more acceptable outer flow model, from a physi-  udw +vdy +dyp— R 1V2y=0, (2
cal point of view, than a potential solution, here it was de-
cided to generalize the modeling of the inner and outer layers  %x4+ 9y =0, )
and to free the analysis from the addition of any decay conwhere ,y) are the longitudinal and normal coordinates,
ditions. A matching of two asymptotic Navier—Stokes expan-(u,v) the component velocitiesp the pressure, andR
sion solutions was sought for both the inner and the oute& [10R.~40] the Reynolds number. The adopted adimen-
layers at fixed Reynolds numbers. The inner layer solutiorsionalization is based on the characteristic length of the flow
(Sec. 11 B) was built in terms of a near similarity expansion (a typical lengthD of the body that generates the wakine
in powers of the inverse longitudinal coordinate, see Belariensity p, and the velocityU of the free stream. Both the
and Tordelld® where, in the framework of the boundary outer and the inner flows are required to satisfy this model,
layer model, an analog expansion solution was found up tevhile no linearization is carried out. The specification of the
any order of accuracy. The outer lay&ec. Il Q was builtin  problem is then completed with the system of boundary con-
terms of powers of the inverse of the distance from the bluffditions which excludes the portion of flow on the body scale
body that shapes the wake. and involves symmetry to the longitudinal coordinate and

As the intermediate X finite) steady two-dimensional uniformity at infinity. Furthermore, there is a body of experi-
wake at low Reynolds number®€40) is a system in which  mental knowledge that offers a particularly rich description
the dynamics consists of the transport, through nonlineasf the inner layer, which needs to be inserted into the rel-
convection, and of the diffusion of vorticity, this latter quan- evant boundary and matching conditions. For this purpose,
tity was chosen, rather than the velocity, as the physicaihe inner flow is requiredi) to be a thin layer described by
quantity on which to base the process of matching. The lonthe Navier—Stokes modefii) to match its momentum de-
gitudinal pressure gradients generated by the flow and thfect, with respect to the incoming stream, to the body drag,
entrainment velocities are also matched, see Sec. Il A. Thge., to keep its momentum constant along shdirection,
pressure effects in the inner layer have been considered afd iii) to entrain external fluid? see the detailed presenta-
relevance whenever the transversal momentum balana@n of accessory conditions in the following section. The
shows a pressure term of a magnitude that can be comparedter flow is considered as a Navier—Stokes flow which sym-
with the diffusion and convection terms. metrically wraps a thus characterized inner flow and at the

The synthetic list of the properties of the wake flow same time accommodates~U,v—0,p—p,, for y— + oo,
which have here been taken into account and which were not  The considered domain is composed of the intermediate
taken into account in previous literature is presented in Seand far wake
Il. The terms of the expansion solution are presented up to
the fourth order in Sec. Ill. A comparison between Chang’s
exponentially decaying asymptotic expansion and the presemthere x is the standard longitudinal coordinate—with the
Navier—Stokes expansion solution, as applied to the floworigin placed in the center of the body that generates the

udyu+vau+ad,p—R™TV2u=0, 1

d<x<w; —owly<oxs, (4
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wake—andd>0 is the distance, which decreases with ~ A. Matching rules and structure of the expansion

from the center of the body beyond which the thin shearS®ution

layer model becomes relevant. Funct@ymominally a func- The matching on the pressure forces is not performed

tion of both theR and the shape of the body, is a free param-directly on the pressure, but on its gradient, which is the

eter. Its value, at fixe®, can in theory be obtained by means actual quantity that the equations of incompressible motion

of the matching with the pre-asymptotic flow. It seems reacontrol. As the pressure is only differentiated once along the

sonable to assume that the intermediate flow region begins abordinates, only one condition can be considered. In order

x=d. Thus, according to the definition of intermediate as-to take into consideration that the flow nonparallelism im-

ymptotics, d should not depend to any great extent on theplies a streamwise evolution of the field, we can impose

details of the actual shape. Distandeusually varies from . . '

eight to four diameters foR [ 20,40)).181°Both the origin "Ln IxPo= lm dxp;  for x fixed, )

and the near wake, which includes the symmetrical adherent Y

vortices, fall outside the domain of our analysis. As a consewhere the subscripts indicate outer and inner variables, re-

quence it is necessary to introduce field information thaspectively. Since the wake dynamics is mainly a balance be-

gives one of the accessory conditions alongxteeordinate, tween the convection and the diffusion of the vorticity which

as suggested by Stewartstri,e., the profiles is generated at the body surface, it is considered physically
more significant to impose that the matching is on the vor-
ticity rather than on the velocity. In this manner restrictive

u(x, ,Y;R)=u,(y;R), conditions of irrotationality are not imposed on the outer

flow while, at the same time, an irrotational configuration is

not a priori excluded for the outer flow. Hence farfixed
v(Xe ViR =0, (YiR), 5 P
lIm wy=lim w; . )
y—0 y—o

PO Y R)= P (YiR) To take the entrainment into account, it is necessary to match

the outer and inner values ofat the transition between the
of an experimental nature, which are both the result of @uter and inner fields, which yields
numenqal smulatlon _and _of a laboratory measurement, .., vo=lim v, for x fixed. ®)
placed in the intermediate field at=x, . The second con- y—0 Yo

dition alongx is the uniformity condition at infinity. , , . . — .
At this point, it is opportune to summarize the differ- This set of simple matching rules is applied in the following

ences that characterize the present approach with respect {€never possible, when the limit values are both finite. On
the previous literaturei) The recognition of the existence of SOMe occasions these rules are improved by using the limit-
the intermediate asymptoticThis is a very important point, "9 behavior of the quantities being matched, which are writ-

as the existence of the intermediate region physically introl€" @S asymptotic expansions in the primitive independent

: 25
duces the adoption of the thin shear layer hypothesis, anyriablesx,y= (Sec. I1). _ _
The structure of the inner and outer expansion solutions

relevant near-similar variable transformations for the inner . h ) ]
flow, while, at the same time, it supports a differentiation ofiS sought in the class of inverse coordinate expansions that

the behavior of the intermediate flow with respect to its in_sati;fies the boundary ponditiqns at infinity and allows a
finite asymptotics(ii) The use of thén-field boundary con- Partial variable separation which leads to a sequence of
dition (5) which has a higher degree of field information thaniN€ar systems of ordinary inhomogeneous differential
the mere use of integral quantities such as the drag or the lifuations for the two groups of dependent variables
coefficients, which however are in turn included(®). (i) (Ui i Pi):(Uo,00,Po). For the inner layer, the quasi-similar
The adoption of thénner as a basic approximation, which ransformation is introduced,

means that, up to first order, the inngr solgtion is iqdependent E=x,p=x"Y, (9)

of the outer solution. Coherently with this matching order, . ) ) ] )

the Navier—Stokes model, coupled with the thin layer hy_wh|ch assures the thinness of the inner domain. The intro-
pothesis, very naturally yields the order of the field pressur&uction of the expansion hypothesis

variations O(x~2), see _Sec. IIB. The_i)res_sure variations fo=fio(m)+x Y2y () +x Hp(n)+- (10)
were usually overestimated aO(x -) in previous ) ] -
studies'®16 see also Sec. IMiv) The use of the Navier— for the inner variables therefore allows the condition at
Stokes equations in all the considered fieddthout the ad- X~ to be saﬂsﬁec_i and, _at the same time, the rezsultmg
dition of further restrictive axiomatic positions such as theinhomogeneous  differential  systemZy(fin,7,d,,9")
principle of exponential decay. This does not prevent the= 7,(fio, . .. .,fi(n,l),n,ﬁn,af];R), obtained by introduc-
present solution from showing the properties of rapid decayng (9) and(10) into Egs.(1)—(3), to be linear at each order.
and irrotationality at first and second order for the inner andrlhis is possible because, at each order, the variable separa-
the outer flows, respectively. At the higher orders, whichtion implied by (10), though partial, leads the nonlinear
mainly influence the intermediate region, the decay becometerms in(1) to include only the products of quantities of an
a fast algebraic decay. See Secs. llI-V. order of less tham, and these eventually end up in the in-
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homogeneous term. It should be noted that the expansion E=X,  dy=d¢— letpg
hypothesig10), which fixes the functional dependence of the iy 1 7

inner variables orx, actually makes the second relationship n=x""%, Iy=§& 750y,

in (5) useless, because, onogx,y) is known, vi(x,y) IS According to(10), renamingé—x, the velocity and pressure
obtained by continuity. This is positive, since the experimenexpansions are

tal v profiles suffer from the inaccuracy that is associated

with the smallness of values relevant to a quantity which is U= $o(7)+X *2ha(m) +x 2 dy(m) + - -,

usually much lower than. The quasi-similarity is due to the

(14

. ¢ : 1S : U= +x L2 +x 1 +..
fact that while each single term @10) is self-similar, their = Xo(7) xa(m) Xa(m)
sum is not. pi=mo( 7))+ X YPary(g)+Xx Ltay(m)+ - (15)
For the outer flow we introduce the variable transforma- - . . . .
tion Some preliminary considerations must be introduced at this

point. The structure of this expansion is such that continuity
r=(x2+y)"2  s=y/x (11)  assures=0. This fact is confirmed by the uniformity con-
dition atx— oo, which also determines the other two function
and the expansion hypothesis for the threg,(,,p,) de-  cofficients at order zeroo(n)=1, wo(7n)=p../pU>.
pendent variables From continuity it can also be verified thgi(7)=0. Thus
_ _ the velocity component;=x"1y,(7)+---~0O(x"1). As a
fo=Tfoo(8) 1~ ¥ on(S) 1 Hop(s) - (12) general rule coefficienty, may be obtained directly from
which satisfy the asymptotic outer conditions at infinity. If the continuity equation through the coefficiemts ;.
(11) and(12) are introduced intd1)—(3), both the nonlinear By substituting the change of coordinatéish) and the
and the diffusive terms include only quantities of orders oféxpansion form{15) in the NScequation, a general ordinary
less thann—1 at each order. Thus, all the nonlinear anddifferential equation forp,, n=1, is obtained:
diffusion effects are confined to the inhomogeneous terms, a 1 7 n
fact that reduces the differential order of the transformed L, ¢n5§¢ﬁ+ §¢r'1+ Ed)n:Mn, (16)
equations by one and makes them linear. The new system is
therefore an inhomogeneous linear ordinary differential syswhere the inhomogeneous teivt, is made up of three parts:
tem of the third order of the form:@n(ffm,s,as) Mo=Ty+Pgn+ Sun. 17)
=Pn(foo, - - - fon-1),8:9s;R). The order of the inner sys-
tem sums up to four, and as a consequence four constants
integration are introduced at each order. Two of these can g
determined through symmetry requirements. The outer sys-
tem contains three constants of integration at each order. The nn!t n-2 7
latter constants, together with the two integration constants T,=— 2 E bidn_it E - Eq&{ bnit b xn—i|-
obtained from the inner layer, are determined through the =1 =1
field boundary condition(5) (fitted by the least squares (18)
method—which is actually a double condition on the vari- The termsPg, and Sy, correspond to the pressure gradient
ablesu andp, since thev profile, according to the previous componentd,p and the streamwise diffusion tem‘fu/R,
discussion, is unnecessary—and the three matching condiespectively. Their analytic expression can be deduced by
tions (6)—(8). This set of conditions specifies the vectorial substitution of expansionél5) in the NS equation. Both
appncaﬁon;Mn :[C1,—[C.], that links the constants of in- these terms become identically equal to zero at any order in

Tie first one,T,, comes from the nonlinear ternu-(V)u in
e N equation. It can be seen that,=T,=0, T,
—1¢2 and forn=3,

tegration at each order. the simpler boundary layer model, where they may be con-
sidered as high order Navier—Stokes correctinBegin-
B. Inner expansion ning from this fact, the pressure variations have been consid-

ered to be effectively present in the field starting from the
order of accuracy, which assures the presence in thg NS
y equation of a pressure term that is comparable with at least
x>d(R) , |y|sJ(x) = =—0 as x—x,y—©, one of the convective and diffusive terms. On inspection,
X (19 assumingy;=1+x"Y2¢,+--- andv;=x"1x,(7)+---, the
NSy equation shows that=3 is the lowest order, which
where)(x) is a representation of the boundary between thdeads to a transversal pressure gradient of the same order as
inner and the outer regions, which could almost be regardethe convective (longitudina) and diffusive (transversal
as a parabola of the king’?«x, but which can only be terms. Thus it may be supposed that 7o+ x~ 3?m3(7)
determineda posteriori An inner expansion solution of the +O(x ?), i.e., aypﬁO(x*Z). However, a check in the
Navier—Stokes equationf8lS in what follows, N& equation ~ NSy, written up to orders leading ove®(x °?), yields
along thex coordinate, Ng equation along thg coordinat¢ ~ m5(7) =x"2((1IR) x5+ =(7/2) x4+ x2) +O(x " ?). A
is defined for the wake region according to hypothés@.'®  posteriori it is found that (1R) X+ (712) x5+ x2=0,
The coordinate transformatia®) is here rewritten together which yields p;= 1o+ X 2m4( %)+ O(x~ %9, 7= m,= 73
with the relevant spatial derivative tranformations: =0.

The inner expansion is defined in the region where
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A comment is now opportune. As far as the pressure e(RI4) 7*
effects are concerned, an alternative position could have Fy(7)=| ———Gn(7n)dn, (22
been to suppose thpi= 7+ x Y2 (7)) + - - - . In the case Hro_1(7)
in  which the N§ vyields w;=7,=0 and wj3(7)
=X"3(1R) x5+ (7I2) x4+ x2) +O(X" 3, e, m Gn(n)=A‘”f Mn(7)Hr,—1(7)d7. (22)

=Ky, m=K, and () =Ks+ [((1R) x5+ (7/2) x} _ _
+x2)d7, where now y,= x»(7:K;). This position thus For n=3, these integrals can be evaluated numerically or
leads to p;=mo+ KX Y2+ Kox 14+ max 324+ O(x 7 2). approximated using special functions. Onrgeis known, the
From this one can infer that a field exists where, at the leadse€cond equation ifiL9) gives

ing orders, the pressure varies conspicuously along ttie 7 n—2

rection, while it is constant along the normal direction. The ~ Xn=% $n-1+ 5 Pn-1 (23
significance of this scenario is considered physically ques-

tionable, because in an unconfined wake—a flow where nEﬂVith dq)":fg ‘75'&(?“’ where the conste;)nt.ofdir:)te%r.ation
pressure variation is introduced from the outside—the outefY2S determined by symmetry. Thg, are obtained by direct

field should not be able to impose strong longitudinal varia-Ntégration of the relevant equation (&9). The ordem=0

tions, inasmuch as it is simply the portion of the field whered©€s not foresee any dependencexpthe pressure is con-
matching with the uniformity at infinity is obtained. More- stant, and the relevant integration constigtis settled by

over, due to the concomitant presence of a constant inhomdhe boundary condition at infinity. Since the _field va_riations
geneous term in the differential equations for the coefficient®f Pi Start to appear at the fourth order, the integration con-
#, and ,, this pressure behavior would induce an anomaStantsK1.Kz,Ky are set to zero.
lous plateau in the central field of the outer velocity, which in
turn induces anomalous high values in the central and over- _
shoot regions of the combined velocity field, which have notC' Outer expansion
been experimentally observed® see Fig. 5. The treatment The outer expansion is defined in the region behind the
adopted for the inner pressure field yieleg ,=0 for n body and outside the wake, i.e., the region where
=1,2,3 (P4o=0 for the condition at infinity. y

Independent of this, the streamwise diffusi®y=S3;  x>d(R), |y|=J(X)==—const-0 as x—®,y—ow,
—Sy5=0, Sy3=(4R) X3¢ +57¢]+ n24}). For n=4, X
both theS; , andPg , terms are nonzero and it is possible to
write them as functions oy, . . . ,¢,_, together with their
derivatives, which are quantities all known at the previou
orders. As a result the equations of motion are converted int6o"nected parts.

a hierarchy of ordinary differential systems, which can be  1he adopted outer coordinate transformaiidd) is here
rewritten, together with the relevant spatial derivative trans-

(24)
Since the left boundary of the whole domain lies behind the
Jdody, the outer region is made up of two symmetrically un-

written as -
formations:
$0=0, Lnda=M,, n=1, r=0*+y)"%  d=s d,—(ss. /)05,
_ _ _ 25)
, . on o, 1 s=yIX, dy=SS d,+(s,./r)ds, (
X0:01 Xn:§¢n,1+7¢n,l, nBl! Y ' N °
where
/=0, n=0,..3; (19 s.=(1+5°)"12, (26)
) According to hypothesi$12), the velocity and pressure ex-
Tn=In(do, - - -\ Pn-1, X01 - - Xn-1), N=4, pansions are
where as previously  seen, ¢o=1, xo=0, g Uo=Uq(S)+ T Y2uy(s)+r tuy(s)+---,
=p../(pU?), m=m,=m3=0. _ —1 -1
The first equation can be solved directly fof,, 8 lead- 0o=00(S) 1 1(S)+1 Tup(S) + -, (27)
ing to Po=Po(S) +1 *py(s)+r pa(s)+-- - .
e (RI4) 72 1-n1 R, By substituting in the NS equations, together with the conti-
¢n(m)=A"e CniF1 2 2" nuity equation, a hierarchy of ordinary differential systems is

obtained. The general system of oragecan always be rear-
+RHI, 1 (7)F g m} (20 rengedas
n
’ 2
. o . . u,=-—ss2(u,/stv,tp,/s)+U,,
where A is a factorization of theC, integration constants n 2 (Un/S+ontpn/s)+Uy
(other constants are determined by the symmetry and bound- n
ary conditions at infinity, 1 F ; is the confluent hypergeo- U= Es{ Prt+Va, (28
metric function(Ref. 26, Vol. 1, pp. 427, 473, 47%unctions
Hr,_1(7)=H,_1(3RY?5), whereH, are Hermite polyno-

p'=nszv +P
mials, and n —one o

2
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whereU,, V,,, P, are other inhomogeneous terms, made up  p,=ky,. (37)
of nonlinear combinations ofug,...,U,_1,vq,.--,
Un_1, o, - - - ,Th—1 together with their derivatives. These Both the inner system and the outer system have general

terms correspond to the nonlinear and diffusive terms of thaolutions of the kindu=const,v=const,p=const. At this
original NS equations. The general solution of the systenorder, the matching conditions are trivially satisfied, and the

can be written as correct solutions are directly determined by the boundary
conditions at infinity: thusCy=1,Ky=Kkq;= 7., wherem,,
Un=Kn1Ung + KnaUna +KngUps, (29) =p../(pU?), Kop=0Kga=1.
Un=Kn1vni+Kn2tnz, (30 B. First order
Pn=Kn1Pn1+Kn2Pn2, (31 Inner terms(orderx~*?):
wherek,; are the three integration constants at any given b= —AC,e (R4 772, (39)
order.
x1=0, (39
Ill. TERMS OF THE EXPANSIONS m,=0. (40)

~ The inner and outer expansion terms, which are solutpese terms give the well-known asymptotic Gaussian
tions of systems19) and(28), are here listed up to the fourth ¢4 ution2428 The function coefficientsp; and y, tend to
order. In the expansion, the integra_tion con;tarﬂg, zero exponentially ag— . ConsideringC,= — 1, the fac-
=A,Co,....Cqy.. . KoKy, ... for theinner region and  yorization constana is given by the boundary conditiofs)
Con=Kna,Knz, K3 for the outer region, are determined by the 5q theu distribution atx=x, . Since the momentum defect
boundary and matching conditiortS)—(8). It is found that iy the wake does not depend arthis is equivalent to ob-
the matching, at any given order, leads to a considerablgyining the value ofA from the bluff body drag coefficient
simplification of the higher order system of equations. TheCD' which results inA(R) = 4(R/m)Y2c(R). Coefficients

sequence of the general and simplified systems of equatio > and 7, vanish identically, as can be seen from EG<)
is given in Ref. 27. One should note that in the genera nd(23).

system(28), the nonlinear and viscous terms are always con-  qyter terms(orderr ~%2):
fined to the inhomogeneous terrds , V,, P,, but actually

: -3
enter into the system, at the second ¥) and third ¢ %7 CS1tis) 14is)t2 s,
orders, respectively, whilst in the matched outer system, see u,=ik,; — —iky, —— ks,
Ref. 27, due to the peculiar simplification brought about by 3s(s+i) 3s(s—i) S

the matching, the nonlinear and viscous terms appear jointly (41)
only at the fifth order (~%?). However, the nonlinear and

the lateral diffusive effects are dominant in the inner layer = _ (/2 arctang)| | 1 S_+ (42)
from the first order of accuracy( ) and are accompanied ! 1Mz )

by the effects of the streamwise diffusion and pressure varia-

tion from the third and fourth order outwards, respectively. _ (i) arctang)| _ S+i

The overall picture of the field is that of a nonlinear convec- P1=1€ Kiat ki s, | (43)

tion and diffusion of vorticity in the inner layer transferred to

the outer flow at a first step by a linear transport, which isHere the outer pressure in the inner limit=0 gives
active from the third to the fourth order, and at a second stepap/dx),~ 3(ik,1+ky,) + O(y), which immediately leads to
by the nonlinearity and diffusion processes activated frormk,,= —ikq;. At this order, it can be seen that the inner

the fifth order onward. vorticity vanishes exponentially, but a check on the outer
vorticity behavior in the inner limit y—0 shows
A. Order 0 that  wy~(2Kq1/3+kyg) XYy~ 2— (5ky4/12+ kyo/4) x 32

+0(y?), therefore one setk ;= —(2/3)ky;, and obtains

I t derx9):
nner terms(orderx) 0o~ — (Ky/4) X 32+ 0(y?). This leads toky;=0, which

¢0=Cy, (32)  gives the correct matching with the relevant inner term.
Thus, the only acceptable physical solution is defined by
X0=0, (33 ky;=kq,=k;3=0. The entrainment matching condition on
is also trivially satisfied and yields
mTo= KO . (34)
Outer terms(orderr?): u;=0, v3=0, p;=0. (44
Uo=Kos, (39 ¢, second order
vo=Koz, (36) Inner terms(orderx1):
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b,=AZe~ (R4 ”2[C21 F 1( _ % %3;772 teo (R4 72
1 R
+ E\/'JTR n erf( N 7]) } ) (45)
A
xo=—5 e W7, (46)

As n—oo, it can be shown thap, has an exponential decay

when C,=0, otherwiseg,~ 7~ 2; the behavior ofy, is x
—0 exponentially.

Outer termg(orderr ~1).

The relevant system has the general solution

S_ S,

Up=Kkps_ + kzz? + kzs? , (48)
UVp= k21SS_ + kzzs_ , (49)
P2=Kz8S_ —KyiS_, (50)

so that the inner behavior of the outer pressuredig,),

~kyx 24+ 0(y), therefore one sets,;=0. At this order, the
inner vorticity vanishes exponentially i€,=0, otherwise
w;~ constC,y 3+ 0O(y~*). The outer vorticity behavior in
the inner limit isw,~ (Kpo+ Kag)y 2+ O(y?®), therefore the
only correct matching is given b§,=0 in the inner expan-

sion andk,3= —ky, in the outer. Therefore, in order to de- _‘LO(V*
termine the value ok,,, one checks the behavior of the 'NNer

outer velocityv, in the inner limit:v,=v,/r ~k,,/X. Since,
at the same ordem;~0, it follows that ko»=0, thusk,,
:k22: k23:0 and

U2:0, 02:0, p2:0 (51)
D. Third order
Inner terms(orderx~%?):
, 2 1
$pa=A%e” (RA7 (2—R7]2){§C3—RF3(7])}, (52

A2
X3:7( C,

1 2 a \/ﬁ
_ - (RI2) y . S
+27;e + 5 erf( 5 7;)
m 7R ) 2 VR
_ R — (R/I4) » S
(\[R 77 )e erf( 5 77)] (53

Here, we haveg;~ 7 2 and y3~ x3.=A%2\m/(2R) as

A new matched asymptotic expansion 1903

Outer terms(order r ~%?): the general solution of the
relevant system is

- 3/2
| .
Us= 3 Kas (31/2) arctang) 4 Kas ";2 + 5 k328_3/25§r/2

SS

_ 3 i
. V(1+is)s Z—m) (_1)1/4|
2(i+s) 162 0

>< )| @

(55
vgy=el3ATarcant) k,, + k3zs+3(%_ii)2 : (56)
pg=eld2iarctan)l _jy . — k3zs_3((sl+—+ii); . (57)

Here the inner behavior of the outer pressure dp/¢x),
~1(3ikg—ksp)x 2+ 0O(y), which giveskg,=3iks;. The
outer limit of the inner vorticity is noww;~ (consj x~°?
4), while the behavior of the outer vorticity in the
limt is of the kind wy~(3ksy2)y 2

+ (consh kg;x %24+ 0(y). The correct matching is obtained
by settingkss=0, which givesw,~ (consikg;x ™ >?+0(y).
Finally, in order to determine the value kf;, one can look
at the behavior of the outer velocity, in the inner limit:
vo~kax %2 The outer limit of the inner velocity, at the
same order, isv;~ x3.Xx 2 therefore one obtainks;
=+ 3y3., Where the sign changes with sincev is anti-
symmetric.

E. Fourth order

Inner terms(orderx?):

o 31R
dy=—A'e” V7 C41F1<—§,§;Z772)
+R3’27)(R772—6)F4(77)} (58)
n
X4:§¢3+q’3: (59
1 n 77 ! 3
7T4:j ﬁ)(s+ §X3+ §X3+¢1X2 dn+Ky. (60)

Here, and in general for= 3, we havep,— 0 with algebraic
decay andy,— constt0 asn—o. The behavior ofr, is
instead divergent: one in fact has,~ (consjn+K, (but

n—o. In ¢3, the constanC; is determined by the bound- the matching inner expansion of the outer term has the cor-

ary condition atx=x, . In x5, the constanC, is zero as
determined at the previous order.

rect behavior, see the followingThe constant€, andK,
are determined by the boundary conditic).
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Outer termg(orderr ~2):
2 1 3s°+1 s? 1.01 -
Us=2kyS S~ — 5 k4z@ + k43?, (61)
U4:k4152—(32_1)_k42552—' (62 1.00 At X
u
1

p4=§k4zs%(1—52)—2k4lss%. (63
The behavior of the pressure gradient in the inner limit is 0997 i
now d,po~ — K4X 2+ O(y), while the outer behavior of the
inner pressure is),p;~ (consly+K,x 3, therefore one
sets k.= —K,. The comparison between the vorticities o.9s

gives  wo~ (Kgot+ 2kg9)y 3+[(constks+ O(x )] x 52 0 6 12 18 2%
+O(y) in the inner limit and ;~[(const) y
-1 -5/2 -4y i
tO(X 2)]X +O(y ") in t.he outer limit. Thus, ke FIG. 2. R=34, x/D=20. Details of the matching between(thin line) and
= —kyo/2. Finally, the comparison between the lateral Ve'uo (dotted ling and of the compositel. (thick line) expansion solution.

locities gives vy~ 2kgx 2k x 2+ 0(x"%?) and v, Fourth order of accuracy.
~X32X P4 x4..x"2+0(x"%?), therefore one obtaink,;

=+

T =X

O(x~?)] and diverges at its outer limit, which makes the
matching process with an outer field absolutely necessary.
IV. TEST. THE CIRCULAR CYLINDER WAKE Coming back to the matched solution for the longitudi-

The matched asymptotic expansion for the intermediaté@! velocity component, it is possible to find, in Fig. 6, a
and far wake behind the circular cylinder can be determine§Omparison with:(1) the asymptotic matched solution by
by setting the inner and outer coefficients according to th&hang.” (2) the experimental distribution by Kovaszndy,
boundary and matching conditioris),(6)—(8) as discussed (3) the numerical distribution by Berrort&?! Chang’s solu-
in Sec. IIl. In particular it is important to use the experimen-tion, being the one that reaches the highest order of accuracy
tal field information, as already mentioned by Stewartson iin Poth the inner and outer approximations, is here assumed
195723 fixing the flow distributions at a given section of the @ the reference for the ensemble of expansion solutions
intermediate region see Sec.[(#) and (5)]. The inner and based on the rapid decay principle. It should be recalled that
outer expansions are then used to form the composite expaffle latest onéKida, 1984,'® which was obtained under the
sion f —which, by construction, is continuous and differ- Same body of assumptions and which results in the same
entiable over the whole domain—acccording to the ruleS€quence of terms, is one order of accuracy lower than
fon=Ffin+fon—(for)' ", where (,,) " is the common part Chang’s solution.

of f;, andf, ,, that can be calculated as the inner expansion AS can be seen in Fig. 6, the present matching turns out
of the outer expansion, or vice versa. to be efficacious, contrasting positively with both the experi-

The inner, outer, and composite distributions of the ve-mental and numerical profiles. Chang's results however do

locity components and pressure, R34 and at twenty di- not fully agree with these distributions. This is due to the

ameters downstream to the circular cylinder, are shown in

Figs. 2, 3, and 4. Note that, in Fig. 2, it has been necessary to

use a very enlarged ordinate scale to present the matchin

betweenu; andu,, which would not be visible otherwise. ~ } ]
In a previous work?® the wake—the inner field of the ' /

present problem—was studied through the boundary layer -0-002

model. This simpler model allows the general order term of

the expansion to be analytically determined. In this case, the

pressure field is a uniform field, this being a limiting feature * -0.004

of the model. On the other hand the entrainment is very

efficiently accounted for by the outer limit of the field

which has nonzero values very close to those issued by the -0.006 T{7

Navier—Stokes model. On the contrary, seeking the solution

in terms of matched NS expansions allows the lateral varia-

tions of the outerv field as well as the longitudinal and -0.008

lateral variations of both the inner and outer pressure field to 0 5 10 15

be obtained. See Fig. 5 for a comparison of the two models y

at x=20,40 and R=34. In the case of the matched FIG. 3. R=34, x/D=20. Matching between; (thin line) andv, (dotted

_asymptotic eXpanSior_L it i_S i_nterGSting to observe _that théne); compositev . (thick line) present expansion solution. Fourth order of
inner NS pressure field is just of the fourth ordeme.,  accuracy.
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0.000 . 1‘1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-0.002 / 1.0 i
0.004 T 0.9 -
P-pr
u
-0.006 0.87 B
= (Chang
NN present expansion)
-0.008 0.7 — — Berrone -
® Kovasznay
-—- Chang outer exp.
-0.010 0.6 ° - - - present outer exp| |
0 10 20 30
T 1 T T T T T 1 T 1 T 1 T 1 T 1 T 1 T
y -0 8 6 4 2 0 2 4 6 8 10
FIG. 4. R=34, x/D=20. Matching betweerm;—p;,; (thin line) and p, y

—pins (dotted ling; compositep, (thick line) present expansion solution.

Fourth order of accuracy. FIG. 6. R=34, x/D=20. Comparison of the presefuter and composiig

Chang's (outer and composiie Kovasznay's experimental and Berrone’s

numerical longitudinal velocity distributions. The field information, condi-

tion (5), see Sec. Il A, for the present solution and coefficienta,,c, for
presence, in his inner expansion, of a term const/thside  Chang's solutior(Chang, 196}, has been inserted using the tabulated data

the group of terms a®(e*?). Heree is the small artificial ~ set in Kovasznay(1948, which is, even these days, one of the richest
: : ; ; ources of experimental velocity profiles for the steady circular cylinder
parameter used by Chang in his expansion, .W.hICh may bvévake_
eliminated from the problem by reformulating it in terms of
the physical coordinates. Chang’s term stems from the as-
sumption that the field can accommodate an inner pressure

which is independent of the lateral coordinate, which how-

BL NS-NS ever varies at the leading orders along xheoordinate. Ac-
[__-outér expansiolis cording to Chang, the presence of this term should not be a
1.0 ? - problem because it is also common to the outer solution. In
0.8 7 4 the matching, it is subtracted from the inner expansion, and
u only remains in the outer expansion, hidden inside terms like
06 * const/Z2rz, which, in the outer limiz—«, z=x-+iy, tends
to zero. However, at intermediate valuesyaind for fixedx,
04 this type of term is responsible for an anomalous rise in the
0 2 3 4 0 2 3 4 composite expansion, due to the central plateau that is
0.002 Ivoutl, véompl 0 present in the outer expansion. This is visible in the plots of
0.000 P — Fig. 6, where, inside the intervaH{10<y<10), the present
) - expansion is compared to Chang’s third-order approximation
v [O(€%?)], which is equivalent t@(x*?) and toO(r %7
-0.004 for the present inner and outer expansions, respectively. In
0.006 Fig. 6 Chang's distributions clearly show the presence of the
term e(const/2rx), which biases the outer solution at finite
O 5 10 15 0 5 10 15 values ofx to values greater than 1 and forces the composite
0.000 e expansion to assume inaccurate values mostly in the region
-0.001 \ /%\\ aroundy/D~2 and outwardgat y/D =20 the longitudinal
-0.002 \ Ipout-peol=>0 velocity is still appreciably different fron).
-0.003 PP "‘; Other remarks could be made. Chang’s matching is di-
-0.004 '\' {pecomp=pee{—>0 rectly conducted on the velocity and pressure and sometimes
-0.005 \ Ipin-popl— also on the stream function. The terms of the outer expansion
-0.0060"565"20 60 30 0 20 40 60 80 are obtained from those of the inner expansion through ana-

lytical extrapolation(the principle of eliminability of the ar-
FIG. 5. R=34, x/D=20,40. Comparison between the boundary layer ex-tm(?laI parametere coupled to a SWIFChbaCk proceQure,
pansion(Ref. 18 and the present matched solution. Thick lires:20, thin YVhICh, however, has not been generallzed for terms '.nVOIV'
lines: x=40. Full lines: BL profiles; NS—NS matched solution: inner pres- iNg l0g €) but these terms were not checked to be solutions at
sure and composite profiles. Broken lines: outer profiles. The diamonds arthe various orders of the outer flow equatidmeéich were
data by Kovasznay1948 (Ref. 19, which are, even these days, the only ot hrasented in the aforementioned paper spite of the
source of experimental velocity profiles for the intermediate region of the . . .
steady circular cylinder wake. The Kovasznay data do not include informaf@Ct that the inner expansion is forced to assume a lateral

tion on the lateral velocity and the pressure. exponential decay, the higher order terigesg., the order
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