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Shearless turbulence mixing.
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e no mean shear = no turbulence production
_' e the mixing layer is generated by the turbu-
e lence
™ inhomogeneity, i.e.:
: ¢ by the gradient of turbulent energy

and
¢ by the gradient of integral scale




Higher order moments: skewness and kurtosis profiles
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Case C: &£ =06.5, L = 1.5: the gradients of energy and scales have

the same sign: larger scale turbulence has more energy
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Penetration - position of the maximum of skewness /kurtosis
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Penetration with £ =1

Scaling law (energy ratio):
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Part 2: similarity analysis

Properties of the numerical solutions:
e A self-similar decay is always reached

e [t is characterized by a strong intermittent penetration, which depends
on the two mixing parameters:

—the turbulent energy gradient
—the integral scale gradient

This behaviour must be contained in the turbulent motion equations:

e the two-point correlation equation which allows to consider both the
macroscale and energy gradient parameters
(Bij(x,1,t) = uj(x, t)uj(x + r,1));

e the one-point correlation equation, the limit r — 0, which allows to
obtain the third order moment (skewness) distribution.
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Definition of two-point double correlation:
Bij(x,r,t) = ui(x, t)uj(x +r,1)
Byilx,r,t) = plx, u(x + 1.0
Bip(x,1,t) = ui(x, Op(x + 1, 1)

Definition of two-point triple correlation:

Byjii(%,1,t) = wi(x, tuj(x, t)ug(x +r,¢)

Bi|jk(X7 r, t) — ui<X7 t>uj<X Tr, t)Uk(X T r, t)



We consider the equation for the two-point lateral correlations in the
limit r, — 0 (cylindrical polar coordinates)
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Hypothesis and semplifications

e The two homogenous turbulences decay in the same way, thus
Ey(t) = Ayt + 1o)™Y, Ea(t) = Ag(t +19) ™"

the exponents nj, ng are close each other (numerical experiments,
Tordella & lovieno, 2005). Here, we suppose ny = ng =n =1, a
value which corresponds to Ry > 1 (Batchelor & Townsend, 1948).

e In the absence of energy production, the pressure-velocity correlation

has been shown to be approximately proportional to the convective
fluctuation transport (Yoshizawa, 1982, 2002)

ud + 207

5 :

e Single-point second order moments are almost isotropic through the
mixing:

—p_lm =a a =~ 0.10,

2~ g2
us ~ v;



Similarity hypothesis

The moment distributions are determined by
e the coordinates x, rq, t

e the energies F(t), Eo(t)

e the scales (1(t), lo(t).

Thus, through dimensional analysis,

Byz(x,710,1) = B%:x(_OOaO»t)S%x(na) (7)
Bxx|x<x7TOat) = Bgm(_ooaoat)@a:x\x(na) (8)
(9)

dove
T 0

1= A ST
where A(t) is the mixing thickness and ¢(z,t) = is the local integral
scale. Bpz(—00,0,t) is the one-point correlation in the homogeneous

region of high kinetic energy, which is equal to (2/3)F(t).




= similarity conditions:

By introducing the similarity relations in the equation and by imposing
that all the coeflicients must be independent from x, ¢, it is obtained

A(t) o< £1(t)

and by taking the limit £ — 0 = similarity equation:
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By introducing a Taylor microscale and an integral scale defined on the lateral double
velocity correlation

1 Byy(0)
A2 2Byy(0) 4y
(=2 ggﬁgidfr (12)

By recalling
Uz, 1) = Gi(t)Ar(n)

and representing the Taylor microscale as
A, t) = Li(t)Ar(n).

it is possible to write!
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Lthe first is just a normalization condition, which is implied by the position & = rq/¢(x, ).




The previous similarity equation may then be written as
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In case the ratio Ay /A; is constant, then the term inside square brackets will also be
constant. But this term vanishes when 17 — 400, which means that it is always zero.

So that () 2Ry
\7 o Al

and the solution is independent on the scale variation.

We take this position as a representation of the mixing with £ =
(1(t)/05(t) = 1 (where subscripts 1 and 2 refer to the high/low energy
regions respectively)




Normalized energy and skewness distributions; £ = 6.7 and £ = 1.
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Position of the skewness maximum
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When £ # 1 the ratio A\p/A; cannot be constant inside the mixing, which implies
that the shape of the double correlation, even if normalized with the local energy and
integral scales, is changing through the layer.

We can suppose

1+£—1_1—£—1

Ar(n) = — , Flan) (15)
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The two parameter a e b are function of £, a # 1 makes the distribution of integral scale
different from the energy distribution (modifies the thickness of "scale mixing layer”
with respect to that of the energy), b # 0 modifies the shape of the correlation function
inside the mixing (changes the distribution of the Taylor microscale with respect to
that of the integral scale). We obtaine:

3. 1 X b2
f(R)\l)Rg@))\QT(n) gkl — £ Ar(n).

The integral of this term in n = (—o00,00) vanishes for Vk > 2. The associated
contribution to the skewness is an additive term
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The third order moment is
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For instance, by taking £ = 2 and fixing b = 0.1,
a=3,4—24L
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Conclusions

The intermediate asymptotics of the turbulence diffusion in the absence
of production of turbulent kinetic energy is considered.

e An intermediate similarity stage of decay always exists.

e When the energy ratio £ is far from unity, [HHCHIBINGUSNVOL Y IUCTNIIU0CIT

e when £ = 1, the intermittency increases with the energy ratio £
with a scaling exponent that is almost equal to 0.29.

e intermittency smoothly varies when passing through £ = 1:
it increases when £ > 1 (concordant gradient of energy and scale),
it is reduced when £ < 1 (opposite gradient of energy and scale)

e the self-similar decay of the shearless mixing is consistent with the
similarity solution of the two-point velocity correlation equation.
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