Anisotropy and intermittency in the turbulent shearless mixing

61st APS-DFD 2008, APS-DFD Meeting, San Antonio, November 23-25, 2008

Daniela Tordella, Michele Iovieno

Dipartimento di Ingegneria Aeronautica e Spaziale Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Turbulent shearless mixing

Ref: J. Fluid Mech. 549, 441-451, (2006).

1-High energy turbulence 2-Low energy turbulence

Mixing layer

State of the art

- Grid turbulence experiments:
 - Gilbert JFM 1980
 - Veeravalli-Warhaft
 JFM 1989

State of the art

-Temporal decay

- Grid turbulence experiments:
 - ▶ Gilbert *JFM* 1980
 - Veeravalli-Warhaft
 JFM 1989
- Numerical experiments:
 - Briggs et al. JFM1996
 - Knaepen et al. JFM2004
 - Tordella-Iovieno *JFM* 2006
 - Iovieno-Tordella-Bailey *PRE* 2008

State of the art

-Temporal decay

- Grid turbulence experiments:
 - ▶ Gilbert *JFM* 1980
 - Veeravalli-Warhaft
 JFM 1989
- Numerical experiments:
 - Briggs et al. JFM1996
 - Knaepen et al. JFM2004
 - Tordella-Iovieno *JFM* 2006
 - Iovieno-Tordella-Bailey *PRE* 2008

Main features

- High intermittency, function of:
 - gradient of turbulent kinetic energy
 - gradient of integral scale
- A gradient of kinetic energy is a sufficient condition for the onset of intermittency (*PRE* 2008)
- Intermittency is (JFM 2006)
 - ► ENHANCED if the energy gradient is concurrent with the integral scale gradient
 - > REDUCED if the energy gradient is opposite to the integral scale gradient

Aim and Method

- Aim: to study the intermittency features of the large as well of the small scales
- Three different Reynolds numbers: $Re_{\lambda} = 45$, 71 and 150.
- Energy ratio $\mathcal{E} = E_1/E_2$ from 6 to 10^4 with uniform integral scale.
- Velocity and velocity derivative statistics
- Method: DNS
 - ightharpoonup parallelepiped domain, $2\pi \times 2\pi \times 4\pi$
 - Fourier-Galerkin pseudospectral space discretization
 - explicit RK-4 time integration

Large scale intermittency

$$Re_{\lambda} = 45, \mathcal{E} = 6.7$$

$$S = \overline{u^3}/\overline{u^2}^{3/2}$$

$$K = \overline{u^4} / \overline{u^2}^2$$

 S_{max} , K_{max} = maximum of Skewness and Kurtosis in the mixing layer

 η_{max} = position of the maximum in the mixing layer

Large scale intermittency

$$Re_{\lambda} = 150, \mathcal{E} = 6.7$$

 $S = \overline{u^3}/\overline{u^2}^{3/2}$

$$K = \overline{u^4} / \overline{u^2}^2$$

 S_{max} , K_{max} = maximum of Skewness and Kurtosis in the mixing layer

 η_{max} = position of the maximum in the mixing layer

Velocity component in the mixing direction, longitudinal moments: $E_1/E_2=6.7$, $\ell_1/\ell_2=1$ $Re_\lambda=45$

Velocity component in the mixing direction, longitudinal moments: $E_1/E_2=6.7$, $\ell_1/\ell_2=1$ $Re_\lambda=150$

Velocity component normal to the mixing direction, longitudinal moments: $E_1/E_2=6.7$, $\ell_1/\ell_2=1$ $Re_\lambda=45$

Velocity component normal to the mixing direction, longitudinal moments: $E_1/E_2=6.7$, $\ell_1/\ell_2=1$ $Re_\lambda=150$

Asymptote for $E_1/E_2 \to +\infty$

Skewness:

u, x in the mixing direction

Asymptote for $E_1/E_2 \to +\infty$

Kurtosis:

velocity derivative

u, x in the mixing direction

Longitudinal derivatives

General behaviour in all situations

(data at $Re_{\lambda}=150$, $E_1/E_2=6.7$).

Longitudinal derivatives

Scheme of the general behaviour for the longitudinal *skewness*

Longitudinal skewness

Comparison between the variation of the longitudinal derivative skewness of the component along the mixing and normal to the mixing

$$\Delta S = \mid S_{mixing} - S_{HIT} \mid$$

Comparison with homogeneous turbulence

Comparison of longitudinal moments inside the mixing with longitudinal moments in homogeneous and isotropic turbulence

- HIT, present simulations
- Shearless mixings, present simulations
- O HIT, data from Sreenivasan and Antonia, Ann.Rev.Fluid Mech 1997

Conclusions

Over a range of energy ratios, for Re=45, $7 \le \mathcal{E} \le 10^4$, and for Re_{λ} 71 and 150, $\mathcal{E} = 7$, we observed:

- an intermittency increase with the energy ratio:
 - velocity Skewness and Kurtosis as large as 2.3 and 11, respectively
 - longitudinal derivative Skewness and Kurtosis as large as -5 and 50
- anisotropy quantitative data:
 - velocity: negligible for the second moments, significant for third order moments
 - longitudinal velocity derivatives (3rd and 4th moments): significant, it increases with the Reynolds number.

Appendix: Shearless mixing statistics

	$\overline{u_i u_i u_3} / \overline{u_3^2}^{3/2}$			Velocity Kurtosis			Long. derivative skewness			Long. derivative kurtosis			Trans. Moments	
	i=1	i=2	i=3	K_{u_1}	Ku_2	K_{u_3}	$S_{\partial_1 u_1}$	$S_{\partial_2 u_2}$	$S_{\partial_3 u_3}$	$K_{\partial_1 u_1}$	$K_{\partial_2 u_2}$	$K_{\partial_3 u_3}$	$S_{\partial_1 u_3}$	$K_{\partial_1 u_3}$
E_1/E_2 :	Mixings with $\ell_1/\ell_2=1,$ $R_\lambda=45$													
6.6	0.34	0.36	0.82	3.6	3.4	4.07	-0.11	-0.10	-1.04	5.0	4.85	6.95	0.29	6.55
40	0.54	0.59	1.34	5.6	6.0	5.56	0.52	0.70	-2.08	7.1	6.77	12.0	0.50	8.50
80	0.63	0.69	1.57	6.4	6.7	6.67	0.95	1.1	-2.60	8.5	8.6	17.1	0.60	13.0
300	0.78	0.87	1.91	7.5	8.2	8.93	1.5	2.0	-3.37	16	14	24.5	1.0	13.6
10^{4}	0.92	0.95	2.20	7.8	8.2	11.6	3.4	3.2	-4.70	20	26	37.3	1.05	23.1
Mixings with $\ell_1/\ell_2=1,$ $R_{\lambda}=71$														
6.6	0.42	0.37	0.81	3.65	3.55	4.8	-0.15	-0.19	-1.08	4.45	4.65	6.20	0.20	5.95
Mixings with $\ell_1/\ell_2=1, R_\lambda=150$														
6.7	_	-	0.96	_	_	4.30	-0.30	-0.28	-1.16	5.7	5.8	7.20	0.12	7.30
Veeravalli and Warhaft(1989), $E_1/E_2 \approx 7, \ell_1/\ell_2 \approx 1.5 \div 1.7$														
bars	==	==	1.06	4.36	4.23	5.53	==	==	==	==	==	==	=	=
plate	==	==	0.63	3.47	3.49	4.07	==	==	==	==	==	==	=	=

Legend:

3 = inhomogeneous direction, 1,2 = homogeneous directions

 S_{u_i} , K_{u_i} = skewness and kurtosis of u_i

 $S_{\partial_j u_i}$, $K_{\partial_j u_i}$ = skewness and kurtosis of $\partial u_i/\partial x_j$

