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Turbulent shearless mixing
Ref: J. Fluid Mech.549, 441-451, (2006).
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1-High energy turbulence 2-Low energy turbulence
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State of the art

Grid turbulence
experiments:
» GilbertJFM 1980

» Veeravalli-Warhatft
High Energy Turbulence J F M 1989

| —

Mixing layer

Low Energy Turbulence
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State of the art

—Periodic b.c.

—Temporal decay

Grid turbulence
experiments:

» GilbertJFM 1980
» Veeravalli-Warhatft
JFM 1989

Numerical experiments:
» Briggset al.JFM
1996

» Knaepenret al. JFM
2004

» Tordella-lovienadFM
2006
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Main features

High intermittency, function of:

» gradient of turbulent kinetic energy
» gradient of integral scale

A gradient of kinetic energy Is a sufficient

condition for the onset of intermittenci?RE
2008)

Intermittency i1s JFM 2006)

» ENHANCEDIf the energy gradient Is
concurrent with the integral scale gradient

» REDUCEDIf the energy gradient is opposite
to the integral scale gradient
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Aim and Method

Aim: to study the intermittency features of the
large as well of the small scales

Three different Reynolds numbers:
Rey) = 45, 71 and150.

Energy ratio€ = £, /E, from 6 to10* with
uniformintegral scale.

Velocity and velocity derivative statistics

Method: DNS
» parallelepiped domairr x 27 X 4

» Fourier-Galerkin pseudospectral space
discretization

» explicit RK-4 time integration
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L arge scale inter mittency

Rey, =45, =06.7
— —am

S = w3/

Sae. 0. = maximum of Skewness and Kurtosis
IN the mixing layer
Nmar = POSItion of the maximum in the mixing layer
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L arge scale inter mittency
Re), =150,& =6.7

Sae. 0. = maximum of Skewness and Kurtosis
IN the mixing layer
Nmar = POSItion of the maximum in the mixing layer
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Small scale inter mittency

Velocity component in the mixing direction,
longitudinal moments®, / F, = 6.7, (1 /(5 = 1
R@)\ — 45

n IS the dimensionless coordinate along the mixing
A IS the mixing half-width
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Small scale inter mittency

Velocity component in the mixing direction,
longitudinal moments®, / F, = 6.7, (1 /(5 = 1
R@)\ = 150

n IS the dimensionless coordinate along the mixing
A 1S the mixing half-width
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Small scale inter mittency

Velocity component normal to the mixing direction,
longitudinal moments®, / F, = 6.7, (1 /(5 = 1
R@)\ — 45

n IS the dimensionless coordinate along the mixing
A IS the mixing half-width
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Small scale inter mittency

Velocity component normal to the mixing direction,
longitudinal moments®, / F, = 6.7, (1 /(5 = 1
R@)\ = 150

n IS the dimensionless coordinate along the mixing
A 1S the mixing half-width
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Asymptotefor £,/ FEy; — +00

Skewness:

Rg =44 velocity skewness ®
Rg=44 velocity derivative skewness
Rg=71 velocity skewness

Rg=71 velocity derivative skewness
Rg=150 velocity skewness

Re=150 velocity derivative@kewness

v o *°

+— ..w

velocity
velocity derivative

u,  In the mixing direction
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:

Asymptotefor E,/Es

Kurtosis:

Rg=45, velocity kurtosis

Reg=45, velocity derivative kurtosisgy
Rg=71, velocity kurtosis

Reg=71, velocity derivative kurtosis
Rg=150, velocity kurtosis

Rg=150, velocity derivative kurtosis

velocity
velocity derivative

u, x In the mixing direction
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L ongitudinal derivatives

General behaviour in all situations

(data atRe), = 150, E;/FEy = 6.7).
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L ongitudinal derivatives

Scheme of the general behaviour for the longitudinal
skewness

A
- Sav/ay

isotropic ASay/ay

turbulence
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L ongitudinal skewness

Comparison between the variation of the longitudinal denwe
skewness of the component along the mixing and normal to the
mixing

AW :’ Smi:m'ng — SHIT ’

7t h 61st APS-DED Meetina. San Antonio 23-25 November 2008 —pn. 11/14



Comparison with homogeneous tur bu-
lence

Comparison of longitudinal moments inside the mixing with
longitudinal moments in homogeneous and isotropic turmee

e Shearless mixings, present simulations

O HIT, data from Sreenivasan and Antonia, Ann.Rev.Fluid Mech
1997
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Conclusions

Over a range of energy ratios, for Re=45< £ < 10%, and for
Rey 71 and 150¢ = 7, we observed:

an intermittency increase with the energy ratio:

» velocity SkewnesandKurtosisas large as 2.3 and 11,
respectively

» longitudinal derivativeskewnesandKurtosisas large
as -5 and 50

anisotropy quantitative data:

» Vvelocity: negligible for the second moments, significant
for third order moments

» longitudinal velocity derivatives3(¢ and4** moments):
significant, it increases with the Reynolds number.
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Appendix: Shearless mixing statistics

W/Eg 2 Velocity Kurtosis Long. derivative skewness Long. derivative kurtosis Trans. Moments
i=1 i=2 i=3 | Kuy Kuy, Kug | Sojur Sogus  Sozuz | Kojuy,  Kogus  Kozuz | Sojus | Koyus

Ei/Es: Mixings with £; /€2 = 1, Ry = 45

6.6 0.34 0.36 0.82| 3.6 3.4 4.07 | -0.11 -0.10 -1.04 | 5.0 4.85 6.95 0.29 6.55

40 054 059 1.34| 5.6 6.0 5.56 | 0.52 0.70 -2.08 | 7.1 6.77 12.0 0.50 8.50

80 063 069 1.57| 6.4 6.7 6.67 | 0.95 1.1 -2.60 | 8.5 8.6 17.1 0.60 13.0

300 0.78 087 191 75 8.2 893 | 15 2.0 -3.37 | 16 14 24.5 1.0 13.6

104 092 095 2.20| 7.8 8.2 116 | 3.4 3.2 -4.70 | 20 26 37.3 1.05 23.1
Mixings with £1 /42 = 1, Ry = 71

6.6 042 037 0.81] 365 355 48 | -0.15 -0.19 -1.08 | 4.45 4.65 6.20 0.20 5.95
Mixings with £1 /¢2 = 1, Ry = 150

6.7 - - 0.96 | — - 4.30 | -0.30 -0.28 -1.16 | 5.7 5.8 7.20 0.12 7.30

Veeravalli and Warhaft(1989F /Eo ~ 7,41 /42 ~ 1.5 + 1.7
ETES == == 1.06 | 436 423 553| == == == == == == = =
plate == == 0.63| 347 349 4.07| == == == == == == = =

L egend:
3 = inhomogeneous direction, 1,2 = homogeneous directions
Su;, Ku, = skewness and kurtosis af

So,u;r Koju; = skewness and kurtosis 8i.; /0x ;
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