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Shearless turbulence mixing.
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e no mean shear = no turbulence production

Pl Gt Sl - i
y >

e the mixing layer is generated by the turbu-
lence
B inhomogeneity, i.e.:
¢ by the gradient of turbulent energy
and
¢ by the gradient of integral scale




Previous investigations:

FEsperiments with grid turbulence:

~ Gilbert B. J. Fluid Mech. 100, 349365 (1980).
— Veeravalli S., Warhaft Z. J. Fluid Mech. 207,191-229 (1989).

Numerical simulations (DNS):
— Briggs D.A., Ferziger J.H., Koseft J.R., Monismith S.G. J. Fluid Mech. 310, 215~

241 (1996),
— Knaepen B., Debliquy O., Carati D. J. Fluid Mech. 414, 153-172 (2004).

e in (passive) grid turbulence the higher energy is always associated to
larger integral scales, so the two parameters are not independent =
gquess about no intermittency in the absence of scale gradient and
turbulence production.

e numerical simulations reproduced the 3,3:1 laboratory experiment by
Veeravalli and Warhaft.



New decay properties

e the two parameters, the turbulent kinetic energy ratio £ and the
integral scale ratio L. has been independently varied

e the persistency of intermittency in the limit of no scale gradient (£ —
1) and absence of turbulence production has been investigated.

In particular we present:

e Part 1:results from numerical simulations (DNS and LES, 2005 JFM,
to appear)

e Part 2: intermediate asymptotics analysis (£ — 1, 2005 [FIP TC7
and DLES6; £ # 1, in preparation)




Part 1: numerical experiments

Numerical simulations (DNS and LES) have been carried out with

e ['ixed energy ratio & ~ 6.7 and varying scale ratio 0.38 < £ < 2.7
e No scale gradient (£ = 1) and variable energy ratio 1 < & < 58.3

e Reynolds number: Rey &~ 45 (DNS, LES) and Rey ~ 450 (LES, IAM
model, Tordella & Tovieno Phys. Fluids 2002)

e Numerical method: Fourier-Galerkin pseudospectral on a 27 X 27 x 47w
parallelepiped (Iovieno et al. Comp.Phys. Comm. 2001)
Resolution: DNS = 1282 x 256, LES = 322 x 64

e [nitial conditions: two turbulent fields coming from simulations of
decaying homogeneous isotropic turbulence.



Decay exponents

e The two homogeneous fields decay algebrically in time, according to
theoretical (and experimental) results (see Karman and Howarth 1938,

Sedov 1944, Batchelor 1953, Speziale 1995)
E=A{t+1t) "

e Decay rates ny, ny are higher than the limit, n = 1, for high Reynolds
number, but still close to this value (n] &~ ng =
the energy and scale ratios remain nearly constant (up to 10%) during

the decay -
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e All mixings have an intermediate self-similar stage of decay



Energy similarity profiles
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A(t) = mixing layer thickness, £(t) = 5%; R0 where R;; is the
longitudinal velocity correlation (see e.g. Batchelor, 1953).



Higher order moments: skewness and kurtosis profiles
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Case C: &£ =06.5, L = 1.5: the gradients of energy and scales have
the same sign: larger scale turbulence has more energy
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Penetration - position of the maximum of skewness /kurtosis
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Penetration - position of maximum of skewness/kurtosis, £ = 6.7
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Part 2: similarity analysis

Properties of the numerical solutions:
o A self-similar decay is always reached

e [t is characterized by a strong intermittent penetration, which depends
on the two mixing parameters:

—the turbulent energy gradient
—the integral scale gradient

This behaviour must be contained in the turbulent motion equations:

e the two-point correlation equation which allows to consider both the
macroscale and energy gradient parameters
(Bij(x,1,1) = ui(X, t)uj(x +r,1));

e the one-point correlation equation, the limit r — 0, which allows to
consider the effect of the energy gradient only.




Single-point second order correlation equations

To carry out the similarity analysis for £ = 1, we consider the second
order moment equations for single-point velocity correlations

Opu? + Opu’ = Im\olgw&g + m\olgﬁm&é — 26y + t@m%

Opv? + Opviu = wa@@SE — 2eq, + vo-vt
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where:

u is the velocity fluctuation in the inhomogeneous direction .

vy, v9 are the velocity fluctuations in the plane (y1, y9) normal to x,
e 1s the dissipation.



boundary conditions:

outside the mixing, turbulence is homogeneous and isotropic:
e [or z — —oo (high-energy turbulence):

B=R ==
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e For z — 400 (low-energy turbulence):

@wH@mH@mH

L DO
Ry
DO
7 N
~
N——

SHQwH@?H@WQHo

initial conditions:

|
-
DD

— wmze if <0

o

pu =0



Hypothesis and semplifications

e The two homogenous turbulences decay in the same way, thus
Ey(t) = Ayt + o)™, Ea(t) = Ag(t +19) "

the exponents nj, ng are close each other (numerical experiments,
Tordella & Iovieno, 2005). Here, we suppose ny = ng =n =1, a
value which corresponds to Ry > 1 (Batchelor & Townsend, 1948).

e In the absence of energy production, the pressure-velocity correlation

has been shown to be approximately proportional to the convective
fluctuation transport (Yoshizawa, 1982, 2002)

I u3 + 2u7u
—p pu=a 5

e Single-point second order moments are almost isotropic through the
mixing:

, a~0.10,

w2 ~ 2
us ~ v;



These semplifications imply that the pressure-velocity correlations can
be represented as:

Thus the problem is reduced to
Aru? + (1 — 20)0u3 = —2ey, + V072

with the boundary and initial conditions previously described.



Similarity hypothesis

The moment distributions are determined by
e the coordinates x, t

e the energies F(t), Fo(t)

e the scales 01(t), lo(t).

Thus, through dimensional analysis,

Qw — mﬁﬁ@QAd“ m&f%bmghv
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where: '
n = x/A(t), A(t) is the mixing layer thickness, Ry, = MMANVSS\F
1

Oy = tET(t)/01(t), € = E1(t)/Eo(t), L= {1(t)/€o(t)



The high Reynolds number algebraic decay (n = 1) implies:

& = const = E,(0)
E5(0)
0
L = const = 6(0)
2(0)
V1 = const = ————
f(Ry,)
Ry, o t1=" = const
el .
where f(R)) 7372 constant during decay (see Batchelor (1953),

Speziale (1995), Sreenivasan (1998)).

= 7 is the only similarity variable, n = n(x,t).



= similarity conditions:

By introducing the similarity relations in the equation and by imposing
that all the coeflicients must be independent from x, ¢, it is obtained

A(t) o £4(t)
= similarity equation:
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= the third-order moment, 4, can be represented as a function of
the second order moment, which yields
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With regard to the second-order moments, the numerical experiments
suggest the fit (see also Veeravalli & Wahrhaft, JE'M 1989)

3 1+&t 1-¢g7t
Pun =T )

5 erf(n),

This allows to compute the velocity skewness by analitical integration




Normalized energy and skewness distributions; £ = 6.7 and £ = 1.
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Conclusions

The intermediate asymptotics of the turbulence diffusion in the absence
of production of turbulent kinetic energy is considered.

e An intermediate similarity stage of decay always exists.

e When the energy ratio £ is far from unity, [HHCHIRINGHSNVOIYINUCT NG00

e when £ = 1, the intermittency increases with the energy ratio £
with a scaling exponent that is almost equal to 0.29.

e intermittency smoothly varies when passing through £ = 1:
it increases when £ > 1 (concordant gradient of energy and scale),
it is reduced when £ < 1 (opposite gradient of energy and scale)
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NN wherer;; = (u;){u;) —(u;u;) is the turbulent momentum flow

[fli=(26) Zf,gf,g f(x+ 7y + ne&)dm;day . per unit mass. The intrinsic angular momentum equation is

obtained by applying the operatbt [relation(2) in Sec. I]]
Nikolaevskij neglects the tern@(5%). In so doing, he loses to the incompressible Navier—Stokes equation. The addition
the symmetry of the tensors involved in the equations, toof the terme; [ ({(X;ux) — (X;){ux)){u;)]—the convection of
gether with the commutability. the intrinsic angular momentum per unit mass by means of

In the application of the microfluid theory to turbulence, the averaged velocity field—to each side of the resulting
by Eringen®® the turbulent flow is considered as the motion balance yields the following equation fdr., that is, the
of a simple microfluid, even though any physical internalintrinsic angular momentum per unit mass of the elenfgnt
structure that could cause asymmetry is missing. [see(7), Sec. II:

The motion of the micropolar element is described by 1
the mean velocity (x,t) and by the microgyration tensor Dihi=p"djsi +d;cij + Bi (19
va(x,t) (k,1=1,2,3). The latter arises from the motion and where
deformations of material points inside the volume of the mi-
croelement. The resulting system of equations—which are Cij = i (XU = (X {ui)){uj) — ((Xugu;)

not reducible to the filtered Navier—Stokes equations— —(xMuu), (16)
comprehends 12 scalar equations for the three components of .
the mean velocity and for the nine componentsvgf{x,t) sij = &ik({X0%) — (X){ o)), (17)

and contains 23 constant viscosity coefficients. The intrinsic
moment of the momentum equation, which can be obtained Bi=ei{xib = (x)(bi)), (18)

from the antisymmetrical part ofy(x,t), is coupled to the are, respectively, the inertigtontaining stretchingand in-
momentum equation through the antisymmetrical part of theeraction flow tensors of angular momentum a8ds the
stress tensor, as in Mattioli and Nikolaevsky. In his solutioncouple associated to the external field

for the two-dimensional{2-D) turbulent channel flow, Erin- The terms inside Eq$14) and(15) that need to be rep-
gen gives a solution of his system of equations where thgesented through a model are the turbulent momentum and
stress tensor is nonsymmetric. The constant coefficient&ingular momentum stresses. The functional relations on
which are only five thanks to the simple domain geometrywhich the model relies are all Galilean invariants and are
were adjusted according to the experimental observations bjsted below:

Laufer!’ However, it is easily seen that if the nonsymmetric

part of the stress tensor is placed equal to zero, the equations vs=ch, (19
result to be uncoupled and the mean motion would be inde-

pendent of the inteprnal motion of the microelements. 7= Ch(ai(u) + aiu;) = S U &), (20

={(u:\h: - h— 2 -
B. Angular momentum large eddy model for turbulent ¢ij ={ui)h;+ch(d;hi+dih; = 5 dkhi i), (2D

flows wherec is a subgrid constant.

In this paragraph we would like to propose a different ~ The first term on the right-hand side (1) represents
kind of Coup”ng of the momentum and angu|ar momentumthe role played by the StretChing, while the other simulates
equationS, which does not require that a nonsymmetry part d‘he momentum transfer due to the turbulent convection. The
the stress tensor exists. In the framework of the large eddpresent day reference large eddy simulation method is based
scale simulation, a new differential model is proposed for the®n the adoption of Smagorinskyor the vorticity'* models,
turbulent stresses that is based on a Boussinesq transpdfhich assume a local invariance of the turbulent motion.
coefficient that is proportional to the mean intrinsic momentThus, in the immediate vicinity of a point, in time and space,
modulush, a flow integral quantity that takes into account @ dynamical similarity is assumed throughout the field. The
Ve|0city derivatives of any odd Ordésee Sec. I, EqS(G) nondimensionalization of the field is based on the existence
and(7)], and that is supposed to include both the mechanim§f local turbulent scales that are small enough to adjust to the
of stretching and the process of autodiffusion. The coupling!owly changing environment in the external scale. With this
between the momentum and moment of momentum equdﬂOdG' one degree of freedom is introduced—the intrinsic
tions is thus given by the functional dependence of the eddngular momentum—which is portrayed by a relevant differ-
diffusivity over the intrinsic angular momentum of a finite €ntial equation, which is coupled but, however, independent

volume of a fluid. Let us consider the incompressible mo-Of the momentum equation. In this way we also hope to be
mentum equation, able to simulate a turbulent flow that is not in local equilib-

rium. This would, of course, depend on the propriety with
which the turbulent flow tensor of the intrinsic moment of
momentum is modeled. In relatidi2l) it was attempted to
insert the two major inertial phenomena that are present at
the level of the subgrid scales, the stretching and the trans-
port due to the turbulent convection.

In spite of the introduction of an additional differential
Dt<ui>=p71ﬁj<crij>+z9j 7ij+(by), (14)  equation, only one subgrid constanfappears in the model.

1
di(u) +d,(uu,)= ;f?/ffk,ﬂr by,

where o, by are the stress tensor and the external field
respectively. Applying the average operato)s;, the mo-
mentum equation is written in the following form:
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Assuming that the largest resolvable wave number liebulence, (i) homogeneous turbulence undergoing a solid
within the inertial range, that the energy transferred from thébody rotation, andiii) shear-free nhonhomogeneous turbu-
resolved scales to the subgrid scales is equal to the energgnce are presented in this section.
dissipated by the latter and that the energy of the subgrid Before beginning the discussion on the numerical tests,
scales is that contained by their inertial pamee Lilly’® and  the criteria adopted to carry out the comparison of the angu-
Yoshizawd?) constanic may be estimated as 0.066ce Ap-  lar momentum model in the simplest way with different sub-
pendix A for detail$. grid models are described—the Smagorinsky and the mixed
Note that in local turbulence equilibrium conditions the models—being chosen as reference. Since an optimized
scaling of the turbulent viscosity, with respect to the dissipavalue for the angular momentum model subgrid constant is
tion function e and the filtering lengths, is the same as that not yet available at this stage, all the models are considered

of the intrinsic angular momentum, through their basic representation, which is founded on a
subgrid scale coefficient deduced from the knowledge of
h~ 6%3e13~ . (22) only the Kolmogorov constarLilly’s value? for the Sma-

gorinsky model; see Bardinet al. (1980%* and Meneveau
_ _ and Katz(199672° for the mixed model and Appendix A for
For the derivation of these scaling laws see Monin andpe present modelin this way it has been attempted to free
Yaglont? as regardé and Yoshizawd; Leslie and Quarif® e analysis from the peculiarities of the optimization pro-
as regards;. cess, which is always based on empirical information, which,
As a comment on the functional structure of the presenfs not known well and reproduced, could spoil the mutual
model, it is possible to draw a parallel between the latter an‘éomparisons of the models. Our analysis is mostly carried

the mixed subgrid modeBardinaet al, 1980:** out using the very basic values of the subgrid coefficients,
with a few supplements of information relevant to the Sma-
Tﬂ“xzCsim(«ui»«uj))—<<Ui><Uj>>)+2(Cs5)2|(D>|<Dij>, gorinsky and mixed models—utilized with optimized

coefficient€"—to be introduced into the comparative analy-
o . . sis, where opportune. On the other hand, to escape from the

wherecg;, andcs are the similarity and Smagorinsky subgrid .o mpjexity linked to the introduction of a further step in the
coefficients andD;; is the strain rate tensor. The analogy modeling process, we will also avoid comparing the models
consists in the fact that the first terms of the expansions i, he version that arises from the implementation of the
series ofs of the similarity subgrid tensor;™ and of the real dynamical procedur® which, nevertheless, could always be
subgrid tensgr £ij = (u;){u;) —(uju;)) are both proportional adopted to substantially improve the performance of all the
to dmUidmu;6°, while the first terms of the expansions in subgrid models(see the review by Meneveau and Katz,
series ofé of relation (21) and of the inertial tensor of the 2000.25 The angular momentum subgrid model could, of

flow of intrinsizc angular momentunil6) are both propor- o rse undergo the dynamical procedure as could any other
tional to u;w; 5~ (see Appendix B for details From this as- subgrid scale model.

pect we can infer that the present model could feature a  The homogeneous and isotropic field used as the initial
certain degree of backscatter: directlylyrand indirectly on  ¢qngition for all the large eddy simulations carried out to

vs. Also of interest is the fact that—in the context of spectralvandate the present model is the 81DNS database by
numerical simulations—the number of spectral products tha\tNray.” The initial distribution of the volume-averaged ve-
are necessary to implement the angular momentum model, {3 jties and intrinsic moment of momenta are determined by
spite of the fact that it is a differential model, is exactly the averaging Wray's data over cubes with Sides correspond-
same as the number of spectral products that are necessaryiﬁ% to a LES spatial resolution of 84oints.

implement the m|xe_d model. . The energy temporal decays of homogeneous and isotro-
~ Inshort, the main features of this model are the follow- i t;rhylence, obtained from pseudospectral Navier—Stokes
ing: the capability of following the evolution df, and thus i 1ations over 6% points, implementing the angular mo-
of v, through a relevant differential equation and the Propethentum, the Smagorinsky and the mixed models, are shown
scaling with respect to the filtering length and the dissipatior), Fig. 1(a), together with the decay produced by the direct
rate. The differential nature would suggest an employment of, , merical simulation by WréJ over 513 points.

nonequilibrium turbulent flows for simulations. To make the LES temporal decays, obtained after filter-

A unique feature of the present model is its natural CONjng the DNS data, and the DNS decay comparable, the last
venience to simulate the dynamics of structured fluid in t“r'decay is also shown after having applied at each instant a
bulent motion. In this case, the coupling between the Moy, hass filter on the spectral energy that consists of the
mentu_m and angular momen'Fum equations already hav'nﬁhtegration of the three-dimensional energy spectrum—
been introduced by the physics of the system, the modg} .| ded in the database at different eddy turnover times—
reduces from differential to algebraic. over the lowest 32 wave numbers, which is equivalent to a
spatial resolution of 64 points for the large eddy simula-
tions.

The angular momentum model behaves well, since it

The results obtained from tests concerning the statisticgberforms slightly better than the basic Smagorinsky and the
and spectral properties @f homogeneous and isotropic tur- mixed models. The performances become equivalent if the

C. Numerical validation of the angular momentum
large eddy model



