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p
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p
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p
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→
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p
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b
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=
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b
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&
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d
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+
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s
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b
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2 ≈
1.2−
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rem
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con
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self-sim
ilar

d
ecay

is
alw

ays
reach

ed

•
It

is
ch

aracterized
by

a
stron

g
interm

ittent
p
en
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b
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o-p
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b
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e-p
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∂
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∂
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1p∂
x u−

2ε
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+
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∂
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∂
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=
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1p∂

y
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1 −
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+
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∂
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∂
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∂
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=
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2 −
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ν
∂

2x v
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w
h
ere:

u
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e

velocity
flu

ctu
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e
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h
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eou

s
d
irection

x
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v
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2
are
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e

velocity
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u
ctu
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s
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e
p
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e
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n
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x
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ε
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e

d
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.
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e
m
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u
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h
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s
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d
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F
or

x→
−∞
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u
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u
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=
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=
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•
F
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ergy
tu
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u
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u
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=
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=

u
3

=
v

21 u
=
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l
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n
d
itio

n
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u
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=
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n
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•
T

h
e
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o

h
om

ogen
ou

s
tu

rb
u
len
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d
ecay

in
th

e
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e
w

ay,
thu

s

E
1 (t)

=
A

1 (t
+

t0 ) −
n

1,
E

2 (t)
=

A
2 (t

+
t0 ) −

n
2

th
e

exp
on

ents
n

1 ,
n
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Nikolaevskij neglects the termsO(d2). In so doing, he loses
the symmetry of the tensors involved in the equations, to-
gether with the commutability.

In the application of the microfluid theory to turbulence,
by Eringen,13 the turbulent flow is considered as the motion
of a simple microfluid, even though any physical internal
structure that could cause asymmetry is missing.

The motion of the micropolar element is described by
the mean velocityvk(x,t) and by the microgyration tensor
nkl(x,t) (k,l 51,2,3). The latter arises from the motion and
deformations of material points inside the volume of the mi-
croelement. The resulting system of equations—which are
not reducible to the filtered Navier–Stokes equations—
comprehends 12 scalar equations for the three components of
the mean velocity and for the nine components ofnkl(x,t)
and contains 23 constant viscosity coefficients. The intrinsic
moment of the momentum equation, which can be obtained
from the antisymmetrical part ofnkl(x,t), is coupled to the
momentum equation through the antisymmetrical part of the
stress tensor, as in Mattioli and Nikolaevsky. In his solution
for the two-dimensional~2-D! turbulent channel flow, Erin-
gen gives a solution of his system of equations where the
stress tensor is nonsymmetric. The constant coefficients,
which are only five thanks to the simple domain geometry,
were adjusted according to the experimental observations by
Laufer.17 However, it is easily seen that if the nonsymmetric
part of the stress tensor is placed equal to zero, the equations
result to be uncoupled and the mean motion would be inde-
pendent of the internal motion of the microelements.

B. Angular momentum large eddy model for turbulent
flows

In this paragraph we would like to propose a different
kind of coupling of the momentum and angular momentum
equations, which does not require that a nonsymmetry part of
the stress tensor exists. In the framework of the large eddy
scale simulation, a new differential model is proposed for the
turbulent stresses that is based on a Boussinesq transport
coefficient that is proportional to the mean intrinsic moment
modulush, a flow integral quantity that takes into account
velocity derivatives of any odd order@see Sec. II, Eqs.~6!
and~7!#, and that is supposed to include both the mechanims
of stretching and the process of autodiffusion. The coupling
between the momentum and moment of momentum equa-
tions is thus given by the functional dependence of the eddy
diffusivity over the intrinsic angular momentum of a finite
volume of a fluid. Let us consider the incompressible mo-
mentum equation,

] t~uk!1] l ~ukul !5
1

r
] l skl 1bk ,

whereskl , bk are the stress tensor and the external field,
respectively. Applying the average operator^•&d , the mo-
mentum equation is written in the following form:

Dt^ui&5r21] j^s i j &1] jt i j 1^bi&, ~14!

wheret i j 5^ui&^uj&2^uiuj& is the turbulent momentum flow
per unit mass. The intrinsic angular momentum equation is
obtained by applying the operatorM @relation~2! in Sec. II#
to the incompressible Navier–Stokes equation. The addition
of the term« i l k@(^xluk&2^xl&^uk&)^uj&#—the convection of
the intrinsic angular momentum per unit mass by means of
the averaged velocity field—to each side of the resulting
balance yields the following equation forhi , that is, the
intrinsic angular momentum per unit mass of the elementId

@see~7!, Sec. II#:

Dthi5r21] j§ i j 1] j ci j 1b i , ~15!

where

ci j 5« i l k@~^xluk&2^xl&^uk&!^uj&2~^xlukuj&

2^xl&^ukuj&!#, ~16!

§ i j 5« i l k~^xlsk j&2^xl&^sk j&!, ~17!

b i5« i l k~^xlbk&2^xl&^bk&!, ~18!

are, respectively, the inertial~containing stretching! and in-
teraction flow tensors of angular momentum andb is the
couple associated to the external fieldb.

The terms inside Eqs.~14! and~15! that need to be rep-
resented through a model are the turbulent momentum and
angular momentum stresses. The functional relations on
which the model relies are all Galilean invariants and are
listed below:

nd5ch, ~19!

t i j 5ch~] j^ui&1] i^uj&2 2
3 ]k^uk&d i j !, ~20!

ci j 5^ui&hj1ch~] jhi1] ihj2
2
3 ]khkd i j !, ~21!

wherec is a subgrid constant.
The first term on the right-hand side of~21! represents

the role played by the stretching, while the other simulates
the momentum transfer due to the turbulent convection. The
present day reference large eddy simulation method is based
on the adoption of Smagorinsky’s18 or the vorticity19 models,
which assume a local invariance of the turbulent motion.
Thus, in the immediate vicinity of a point, in time and space,
a dynamical similarity is assumed throughout the field. The
nondimensionalization of the field is based on the existence
of local turbulent scales that are small enough to adjust to the
slowly changing environment in the external scale. With this
model one degree of freedom is introduced—the intrinsic
angular momentum—which is portrayed by a relevant differ-
ential equation, which is coupled but, however, independent
of the momentum equation. In this way we also hope to be
able to simulate a turbulent flow that is not in local equilib-
rium. This would, of course, depend on the propriety with
which the turbulent flow tensor of the intrinsic moment of
momentum is modeled. In relation~21! it was attempted to
insert the two major inertial phenomena that are present at
the level of the subgrid scales, the stretching and the trans-
port due to the turbulent convection.

In spite of the introduction of an additional differential
equation, only one subgrid constantc appears in the model.

2676 Phys. Fluids, Vol. 14, No. 8, August 2002 M. Iovieno and D. Tordella



Assuming that the largest resolvable wave number lies
within the inertial range, that the energy transferred from the
resolved scales to the subgrid scales is equal to the energy
dissipated by the latter and that the energy of the subgrid
scales is that contained by their inertial part~see Lilly20 and
Yoshizawa21! constantc may be estimated as 0.066~see Ap-
pendix A for details!.

Note that in local turbulence equilibrium conditions the
scaling of the turbulent viscosity, with respect to the dissipa-
tion functione and the filtering lengthd, is the same as that
of the intrinsic angular momentum,

h;d4/3e1/3;nd . ~22!

For the derivation of these scaling laws see Monin and
Yaglom22 as regardsh and Yoshizawa,21 Leslie and Quarini23

as regardsnd .
As a comment on the functional structure of the present

model, it is possible to draw a parallel between the latter and
the mixed subgrid model~Bardinaet al., 1980!:24

t i j
mix5csim~ ^̂ ui&&^̂ uj&&2 ^̂ ui&^uj&&!12~csd!2u^D&u^Di j &,

wherecsim andcs are the similarity and Smagorinsky subgrid
coefficients andDi j is the strain rate tensor. The analogy
consists in the fact that the first terms of the expansions in
series ofd of the similarity subgrid tensort i j

sim and of the real
subgrid tensor (t i j 5^ui&^uj&2^uiuj&) are both proportional
to ]mui]mujd

2, while the first terms of the expansions in
series ofd of relation ~21! and of the inertial tensor of the
flow of intrinsic angular momentum~16! are both propor-
tional to uiv jd

2 ~see Appendix B for details!. From this as-
pect we can infer that the present model could feature a
certain degree of backscatter: directly onhi and indirectly on
nd . Also of interest is the fact that—in the context of spectral
numerical simulations—the number of spectral products that
are necessary to implement the angular momentum model, in
spite of the fact that it is a differential model, is exactly the
same as the number of spectral products that are necessary to
implement the mixed model.

In short, the main features of this model are the follow-
ing: the capability of following the evolution ofh, and thus
of nd , through a relevant differential equation and the proper
scaling with respect to the filtering length and the dissipation
rate. The differential nature would suggest an employment of
nonequilibrium turbulent flows for simulations.

A unique feature of the present model is its natural con-
venience to simulate the dynamics of structured fluid in tur-
bulent motion. In this case, the coupling between the mo-
mentum and angular momentum equations already having
been introduced by the physics of the system, the model
reduces from differential to algebraic.

C. Numerical validation of the angular momentum
large eddy model

The results obtained from tests concerning the statistical
and spectral properties of~i! homogeneous and isotropic tur-

bulence, ~ii ! homogeneous turbulence undergoing a solid
body rotation, and~iii ! shear-free nonhomogeneous turbu-
lence are presented in this section.

Before beginning the discussion on the numerical tests,
the criteria adopted to carry out the comparison of the angu-
lar momentum model in the simplest way with different sub-
grid models are described—the Smagorinsky and the mixed
models—being chosen as reference. Since an optimized
value for the angular momentum model subgrid constant is
not yet available at this stage, all the models are considered
through their basic representation, which is founded on a
subgrid scale coefficient deduced from the knowledge of
only the Kolmogorov constant@Lilly’s value20 for the Sma-
gorinsky model; see Bardinaet al. ~1980!24 and Meneveau
and Katz~1996!25 for the mixed model and Appendix A for
the present model#. In this way it has been attempted to free
the analysis from the peculiarities of the optimization pro-
cess, which is always based on empirical information, which,
if not known well and reproduced, could spoil the mutual
comparisons of the models. Our analysis is mostly carried
out using the very basic values of the subgrid coefficients,
with a few supplements of information relevant to the Sma-
gorinsky and mixed models—utilized with optimized
coefficients25—to be introduced into the comparative analy-
sis, where opportune. On the other hand, to escape from the
complexity linked to the introduction of a further step in the
modeling process, we will also avoid comparing the models
in the version that arises from the implementation of the
dynamical procedure,26 which, nevertheless, could always be
adopted to substantially improve the performance of all the
subgrid models~see the review by Meneveau and Katz,
2000!.25 The angular momentum subgrid model could, of
course, undergo the dynamical procedure as could any other
subgrid scale model.

The homogeneous and isotropic field used as the initial
condition for all the large eddy simulations carried out to
validate the present model is the 5123 DNS database by
Wray.27 The initial distribution of the volume-averaged ve-
locities and intrinsic moment of momenta are determined by
averaging Wray’s data over cubes with 2d sides correspond-
ing to a LES spatial resolution of 643 points.

The energy temporal decays of homogeneous and isotro-
pic turbulence, obtained from pseudospectral Navier–Stokes
simulations over 643 points, implementing the angular mo-
mentum, the Smagorinsky and the mixed models, are shown
in Fig. 1~a!, together with the decay produced by the direct
numerical simulation by Wray27 over 5123 points.

To make the LES temporal decays, obtained after filter-
ing the DNS data, and the DNS decay comparable, the last
decay is also shown after having applied at each instant a
low-pass filter on the spectral energy that consists of the
integration of the three-dimensional energy spectrum—
included in the database at different eddy turnover times—
over the lowest 32 wave numbers, which is equivalent to a
spatial resolution of 643 points for the large eddy simula-
tions.

The angular momentum model behaves well, since it
performs slightly better than the basic Smagorinsky and the
mixed models. The performances become equivalent if the
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