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Abstract

In the absence of kinetic energy production, we consider the influence
of the initial conditions characterized by the presence of an energy gra-
dient or by the concurrency of an energy and a macroscale gradient on
turbulent transport. Here, we present a similarity analysis that interpret
two new results on the subject recently obtained by means of numeri-
cal experiments on the shearless mixing (Tordella & Iovieno, 2004). In
short the two results are: i – The absence of the macroscale gradient is
not a sufficient condition for the setting of the asymptotic Gaussian state
hypothesized by Veeravalli and Warhaft (1989), where, regardless of the
existence of velocity variance distributions, turbulent transport is mainly
diffusive and the intermittency is nearly zero up to moments of order four.
In fact, it was observed that the intermittency increases with the energy
gradient, with a scaling exponent of about 0.29; ii – If the macroscale gra-
dient is present, referring to the situation where the macroscale gradient
is zero but the energy gradient is not, the intermittency is higher if the en-
ergy and scale gradients are concordant and is lower if they are opposite.
The similarity analysis, that is in fair agreement with the previous exper-
iments, is based on the use of the kinetic energy equation, which contains
information concerning the third order moments of the velocity fluctu-
ations. The analysis lies on two simplifying hypotheses: first, that the
decays of the turbulences being mixed are nearly equal (as suggested by
the experiments), second, that the pressure-velocity correlation is nearly
proportional to the convective transport associated to the fluctuations
(Yoshizawa, 2002).
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The dependence of turbulence mixings on the initial conditions was
considered and documented through single-point statistics, obtained by
means of direct and large eddy numerical simulations (Tordella & Iovieno,
2004, Iovieno & Tordella, 2002). The simulations were carried out by
means of a new technique for the parallel dealised pseudospectral inte-
gration of the Navier-Stokes equations (Iovieno et al., 2001). In all the
shearless mixing experiments a self-similar state appeared to exist. The
statistical distributions of orders higher than the second maintain features
that depend on the initial values of the energy, E , and macroscale, L, ra-
tios, and on the sign of L. Independently of the values of the control
parameters and the concurrency, or lack of it, of the energy and scale
gradients, a set of common properties exists for all the studied mixings.
First, the statistical distributions become self-similar after nearly a decay
of three time units. Second, in the self-similarity region of the decay, the
lateral spreading rate is on averege close to 0.15. Third, the kinetic en-
ergy distribution has a common shape (see, (8)). Fourth, all the mixings
– including the mixing with L = 1 are very intermittent, as the skewnes
S and kurtosis K distributions show, see fig.s 1b and 2.

To carry out the similarity analysis we considered the second moment
equations for the velocity fluctuations (u, in the inhomogeneous direction
x, v1, v2 in the plane normal to x),

∂tu2 + ∂xu3 = −2ρ−1∂xpu + 2ρ−1p∂xu − 2εu + ν∂2
xu2 (1)

∂tv2
1 + ∂xv2

1u = 2ρ−1p∂y1v1 − 2εv1 + ν∂2
xv2

1 (2)

∂tv2
2 + ∂xv2

2u = 2ρ−1p∂y2v2 − 2εv2 + ν∂2
xv2

2 (3)

The two mixed turbulences decay in a similar way, as shown by numerical
simulations (Tordella & Iovieno, 2004). Thus, in the decay laws:

E1(t) = A1(t + t0)
−n1 , E2(t) = A2(t + t0)

−n2

the exponents n1, n2 are close each other. Here, we suppose n1 = n2 =
n = 1, a value which corresponds to Rλ � 1 (Batchelor & Townsend,
1948).

In the absence of energy production, the pressure-velocity correlation
has been shown to be proportional to the convective fluctuation transport
(Yoshizawa, 1982, 2002)

−pu = aρ
u3 + 2v2

1u

2
, a ≈ 0.10,

so that −ρ−1pu = αu3, α =
3a

1 + 2a
≈ 0.25. (4)

In this initial value problem, the moment distributions are determined by
the coordinates x, t, and by the energy E and the macroscale � of the two
mixing turbulences. Thus

uk = E
k
2
1 ϕuk(η, R�1 , ϑ1, E ,L) ∀k, εu = E

3
2
1 �−1ϕεu(η, R�1 , ϑ1, E ,L), (5)

where η = x/∆(t), ∆(t) is the mixing layer thickness, R�1 = E
1
2
1 (t)�1(t)/ν

is the Reynolds number relevant to the high energy turbulence, ϑ1 =
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tE
1
2
1 (t)/�1(t) is the time scale of the flow, E = E1(t)/E2(t), L =

�1(t)/�2(t) (where subscripts 1 and 2 refer to the high/low energy regions
respectively). Notice that, if n = 1, E , L, ϑ1 = n/f(Rλ1) and R�1 ∝ t1−n

are constant. Inserting relations 5 in (1), it is deduced that ∆(t) ∝ �1(t).
By putting ∆(t) = �(t), one obtains:

−1

2
η

∂ϕuu

∂η
+

1

f(Rλ1)
(1 − 2α)

∂ϕuuu

∂η
+

ν

Af(Rλ1)
2

∂2ϕuu

∂η2
=

= ϕuu − 2

f(Rλ1)
ϕεu (6)

Given the lateral boundaries of the mixing, that correspond to homoge-
neous conditions for the turbulence, one observes that the rhs of (6) must
be an odd function of η. The previously mentioned experiments suggest to
model this rhs by means of a term proportional to ∂4

ηϕuu (superdiffusive
behaviour, with β as constant of proportionality). In the following, by

simply writing f instead of f(Rλ1), the skewness, S = ϕuuu/ϕ
3/2
uu , reads

S =
ϕ

− 3
2

uu

(1 − 2α)

[
f

2

∫ η

−∞
η

∂ϕuu

∂η
dη +

ν

A1f

∂ϕuu

∂η
+ βf

∂3ϕuu

∂η3

]
(7)

By representing the second moments with the fitting curve given by the ex-
perimental distributions (Veeravalli-Warhaft, 1989 and Tordella-Iovieno,
2004)

ϕuu =
1 + E−1

2
− 1 − E−1

2
erf(η) (8)

one gets

S =
1 − E−1

√
π

e−η2
[

f

4(1 − 2α)

(
1 − 4ν

A1f2

)
+ 2β(1 − 2η)

]
×

[
1 + E−1

2
− 1 − E−1

2
erf(η)

]− 3
2

(9)

Figure 1 shows the good agreement of the modelled variance and skew-
ness distributions (relations 8 and 9) with the experimental data. In
fig. 2 the intermittency parameter associated to the lateral penetration
of the mixing is compared to the values given by the present similarity
law. It is observed that the scaling exponent deduced from the experi-
ment (Tordella & Iovieno, 2004), which is approximately equal to 0.29, is
correctly represented.
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Figure 1: Normalized energy and skewness distributions; E = 6.7 and L = 1.
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Figure 2: Position of the maximum of the skewness S and kurtosis K distrib-
utions as a function of the initial ratio of energy, part (a), and the initial ratio
of integral scale, part (b): xs and xk are the positions of the maximum of S(x)
and K(x), respectively.
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