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The generation of small-scale anisotropy in turbulent shearless mixing is numerically investigated. Data

from direct numerical simulations at Taylor Reynolds’ numbers between 45 and 150 show not only that

there is a significant departure of the longitudinal velocity derivative moments from the values found in

homogeneous and isotropic turbulence but that the variation of skewness has an opposite sign for the

components across the mixing layer and parallel to it. The anisotropy induced by the presence of a kinetic

energy gradient has a very different pattern from the one generated by an homogeneous shear. The

transversal derivative moments in the mixing are in fact found to be very small, which highlights that

smallness of the transversal moments is not a sufficient condition for isotropy.
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Laboratory and numerical results are continuously being
generated on the small-scale features of turbulence dynam-
ics (see, e.g., [1–8]). Turbulent flows contain a wide range
of scales, and each range is characterized by its own
physics. For example, energy dissipation takes place at
small scales. However, the process is linked to the large
scales of the system, and the existence of a long-range
interaction should not be excluded.

A manifestation of the nonuniversal behavior of small
scales is closely related to small-scale anisotropy, which
can be represented in terms of velocity derivative statistics.
In this Letter, we have analyzed the velocity derivative
statistics of shearless turbulent mixing in temporal decay,
a very mild instance of inhomogeneity where near isotropy
could reasonably be expected. In fact, the turbulent shear-
less mixing layer is possibly the simplest instance of an
inhomogeneous turbulent flow, because it is generated by
the interaction of two isotropic turbulences in the absence
of a mean shear flow. Therefore, in this flow, there is no
production of turbulent kinetic energy and no mean con-
vection (for more details on this flow system, see the
Supplemental Materials [9]). In general, this mixing shows
that the behavior of statistical turbulent quantities is influ-
enced by the presence of a kinetic energy gradient.

The shearless mixing is a flow where a significant level
of anisotropy is observed at large and small scales. The
anisotropy persists at the moderate Reynolds numbers that
have been reached in the numerical simulations [8,10–13]
and at the moderate or high numbers that have been
reached in the laboratory [13,14]. These studies show
that the one-point velocity statistics exhibit high intermit-
tency in the velocity component along the mixing, as
indicated by the large maxima of skewness and kurtosis,
and only a mild anisotropy of the second-order moments.
The level of intermittency is a function of both the energy
and integral scale gradients, but a kinetic energy variation
alone is sufficient for the onset of intermittency [8].

It should be noted that in this flow the turbulence struc-
ture is different from the homogeneous sheared turbulence
[1–4,6] but also from the turbulence near the fluctuating
interfaces at the outer edges of turbulent shear layers, with
and without free-stream turbulence [15–17]. Here, the
turbulent energy gradient is imposed and cannot be inten-
sified by the continuous fluctuating interfaces produced by
the instability of the mean shear. However, inside the
shear-free mixing a front of high intermittency is produced
and is displaced towards the low-energy side of the flow
[8,12,14]. The entrainment process is active and is carried
out at the level of both the large and the small fluctuations.
Only one inhomogeneous direction is present in this

flow configuration. The correlations are axisymmetric,
and only the longitudinal derivative moments are signifi-
cantly different from zero. This kind of anisotropy is an
intermediate situation between isotropic turbulence (where
only longitudinal moments are present and equal; see, for
example, [1,18,19]) and homogeneous sheared turbulence,
where both longitudinal and transversal moments are gen-
erated; see [2,3]. In the last case the literature shows that, as
the Reynolds number is increased, the longitudinal deriva-
tive moment in the direction of the mean flow increases,
while the transversal odd moments (of order 3, 5, and 7) are
small in comparison to the even moments. It should be
noticed that the information on the other two longitudinal
derivative moments (in a Cartesian reference frame, those
in the plane orthogonal to the mean flow) is not available at
the moment.
We have analyzed data from numerical simulations in

which Navier-Stokes equations have been solved in a
parallelepiped domain with a fully dealiased (3=2 rule)
Fourier-Galerkin pseudospectral spatial discretization and
a fourth-order explicit Runge-Kutta time integration [20].
The initial conditions have been obtained from a linear
matching of the two homogeneous and isotropic fields
over a narrow region—as large as the flow integral
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scale—by means of a weighting function [8,12]; see
Figs. 1(a) and 1(b). As a consequence, the initial statistics
are closer to those present in a homogeneous flow than to
those that would emerge across the mixing as the two
turbulent flows interact. A sketch of the computational
domain is shown in Fig. 1(a); x is the coordinate in the
inhomogeneous direction, and y1 and y2 are in the homo-
geneous directions normal to x. The domain has an aspect
ratio of 2 (dimensionless size 2�2 � 4�), and the resolu-
tion is 1282 � 256 at Re� ¼ 45, 1922 � 384 at Re� ¼ 71,
and 6002 � 1200 at Re� ¼ 150. All the statistical proper-
ties of the flow are computed as spatial averages over
planes at constant x and are only a function of ðx; tÞ.

The two neighboring turbulent fields are isotropic, and
each field is statistically defined by the turbulent kinetic
energy and the integral scale (or the dissipation rate). Let

us call E1 and E2 the turbulent kinetic energy per unit mass
in the two isotropic regions (E1 >E2) and ‘1 and ‘2 their
integral scales. Three parameters characterize the mixing:
the Reynolds number, the E1=E2 ratio, and the ‘1=‘2 ratio.
It has been found that the intermittency level and the depth
of penetration by the eddies from the high-energy region
increase when the energy and length scale gradients are
concordant and decrease when they are opposite.
Therefore, the most efficient mixing process takes place
when the spectra of the two mixed fields differ in the lowest
wave numbers; see [12].
In order to have only one source of anisotropy, the

turbulent kinetic energy gradient, two sets of simulations
have been considered, both with a uniform integral scale
(‘1=‘2 ¼ 1). The first set of simulations has an energy ratio
fixed at 6.6 and Reynolds numbers, based on the Taylor
microscale, of 45, 70, and 150. In the second set, the energy
ratio ranges from 6.6 to 104 while the Reynolds number is
kept equal to Re� ¼ 45.
The discussion focuses on the normalized third- and

fourth-order one-point moments of the longitudinal veloc-
ity derivative, that is, on the skewness and kurtosis. These
are defined as

S@u=@x ¼ ð@u=@xÞ3=½ð@u=@xÞ2�3=2;
S@v=@y ¼ ð@v=@yÞ3=½ð@v=@yÞ2�3=2;

(1)

K@u=@x ¼ ð@u=@xÞ4=½ð@u=@xÞ2�2;
K@v=@y ¼ ð@v=@yÞ4=½ð@v=@yÞ2�2;

(2)

where y is any direction normal to x (y ¼ y1; y2). The
overbar denotes the statistical average, which has been
approximated by a spatial average on the planes parallel
to and inside the mixing layer at a constant x; see Fig. 1(a).
The turbulence is homogeneous in these planes. The ve-
locity fluctuation u in Eqs. (1) and (2) is the component of
the velocity vector that is responsible for the energy trans-
port across the mixing.
The spatial distribution of the longitudinal derivative

skewness and kurtosis across the mixing layer is shown
in Fig. 2 at several times, where two mixings with the same
energy ratio of 6.6, but a different Reynolds number, are
compared. The spatial coordinate x has been rescaled with
the mixing layer thickness �ðtÞ, conventionally defined as
the distance between the points with normalized energy
ðE� E2Þ=ðE1 � E2Þ equal to 1=4 and 3=4 [8,12,14]. Inside
the mixing layer, negative values of � ¼ x=� correspond
to the highest homogeneous energy flow, positive values to
the lowest homogeneous energy flow. It can observed that
all these statistics depart from the isotropic turbulence
value �0:5, shown in the figure by the horizontal line.
However, the longitudinal derivatives exhibit different be-
havior in different directions. The main feature of these
distributions is that the skewness departs from the opposite

FIG. 1 (color online). Turbulent shearless mixing layer:
(a) Scheme of the computational domain and boundary condi-
tions. (b) Time evolution of the mixing layer thickness, varying
the initial energy ratio E1=E2. The mixing layer thickness �ðtÞ is
conventionally defined as the distance between the points with
normalized energy values ðE� E1Þ=ðE1 � E2Þ equal to 0.25 and
0.75. The color band is the power law fitting with exponent 0.46.
Exponent 0.33, which is indicated in the figure, is the value
measured after the initial transient of the simulations has
elapsed.
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sign of the isotropic value: It is negative in the direction
normal to the mixing layer (we can observe values as high
as�1:1) and is positive in the direction parallel to the layer
(values as high as �0:05).

The longitudinal kurtosis shows a maximum in the same
zone where the skewness departures are observed, which is
always in the low-energy side of the mixing. The values of
those peaks, for both the skewness and the kurtosis, are
almost constant after the initial transient of the simulation,

which lasts about 3–4 initial eddy turnover times � ¼
‘1=E

1=2
1 when Re� ¼ 45 but only about one eddy turnover

time when Re� ¼ 150; here the distributions also show a
fairly good collapse when the spatial coordinate x is re-
scaled with the mixing layer thickness �ðtÞ. A qualitative
scheme of the behavior of the longitudinal skewness is
shown in Fig. 3(a). With respect to the isotropic situation,
the mixing process produces a further compression of the
filaments lying across the mixing layer and a reduction in
the filament compression in the normal directions. All the
mixings follow this common pattern, but the relative values
of the deviations from isotropy �S@u=@x and �S@v=@y de-

pend on the flow parameters. When the Reynolds number

increases, �S@v=@y and �S@v=@y=�S@u=@x decrease

[Fig. 3(b)]. An opposite behavior is seen when the energy
ratio increases; see again in 3(b). For large values of
E1=E2, the mixing approaches a situation where a turbulent
flow diffuses in a region of relatively still fluid, and the
main effect on small scales in this limit seems to be an
additional negative stretching in the direction of the energy
flow. Figure 4 shows the probability density function of the
longitudinal derivatives in the mixing and highlights the
longer negative tail of the probability density of the de-
rivative in the kinetic energy flow direction.
A comparison of the longitudinal moments inside the

mixing layer with the ones measured in the two homoge-

neous flows [homogeneous and isotropic turbulence (HIT)

and homogeneous shear turbulence] is shown in Fig. 5. The

data for the isotropic turbulence in this figure are taken

from the homogeneous regions of the present simulations

and from the reviews by Sreenivasan and Antonia [1],

while the data for the homogeneous shear flows are taken

fromWarhaft and Shen [2,3]. These last data are laboratory

data which, due to the high level of technical difficulties

which characterize this kind of measurements, only give

FIG. 2 (color online). Longitudinal derivative skewness and kurtosis distributions: The dash-dotted lines represent the statistics of
@u=@x, and the continuous lines represent the statistics of @v=@y. The high-energy region has a Taylor microscale Reynolds number
equal to 45 in (a) and (c) and 150 in (b) and (d). The thick horizontal lines represent the values of the longitudinal skewness and
kurtosis in the isotropic flow regions. For data on transversal velocity derivative statistics, see Fig. 4 in the Supplemental Materials [9].
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the longitudinal derivative of the velocity component in the

streamwise direction. The difference with the homogene-

ous shear flow, which generates large transversal moments

but has less influence on the longitudinal ones (with respect

to the isotropic values), is immediately apparent. Shear and

shearless flows have thus different kinds of anisotropy in

the small scales: a strong differentiation of longitudinal

derivative moments for shearless flows and high values of
transversal derivative moments for shear flows.

In conclusion, the simulations we have carried out show
that a significant small-scale anisotropy and intermittency
is generated in a decaying shearless turbulent mixing. This
intermittency is characterized by a large departure of the
longitudinal derivative moments, which are different in the
directions across and parallel to the layer from the typical
values of the isotropic condition, even in this flow where
there is no energy production (due to the lack of mean flow
gradients). The deviations from the isotropic values are
large and follow a common trend: The longitudinal deriva-
tives in the energy gradient direction are more intermittent,
while the intermittency is milder in the orthogonal

directions. We also observe that a small intermittency on
transversal velocity derivatives does not necessarily mean
a tendency towards isotropy. The structure of the anisot-
ropy is such that the skewness departure from isotropy

FIG. 3 (color online). (a) Scheme of the general behavior of
the longitudinal derivative skewness in the shearless mixing
layer. (b) Anisotropy of the longitudinal derivative statistics
variations inside the mixing layer as a function of the energy
ratio at Re� ¼ 45 (circles) and as a function of the Reynolds
number at E1=E2 ¼ 6:6 (squares). All the quantities have been
computed in the center of the mixing layer; �S is the modulus of
the difference between the values of the velocity derivative
skewness in the center of the layer and in isotropic condition.

FIG. 4 (color online). Normalized probability density function
of the longitudinal derivatives; data at t=� ¼ 3:5 in the center of
the mixing layer from the simulation at Re� ¼ 150, E1=E2 ¼
6:6; � ¼ @ui=@xi with i ¼ x, y1, and y2 and �� is its root mean

square. The probability density function is computed by using
6002 � 24 grid points in the mixing layer and 6002 � 120 grid
points in the high-energy homogeneous region. In the homoge-
neous region, the probability density function compares well
with the data by Ishihara et al. (Fig. 5 of [18] and Fig. 4 of [21]),
interpolated at the same Reynolds number, which use a larger
statistical sample (5123).

FIG. 5 (color online). Comparison of the derivative skewness
modulus in the shearless mixing and in the homogeneous shear
flow (data from [2,3]). The data for the homogeneous and
isotropic turbulence are taken from the homogeneous regions
of present simulations and from [1]. Data from Refs. [1–3] have
been read from published graphs. For data on transversal
velocity derivative statistics, see Fig. 4 in the Supplemental
Materials [9].
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reduces the compression on fluid filaments parallel to the
mixing layer and enhances that of the filaments orthogonal
to it. In the shear-free mixing, the small-scale turbulence
has a different structure than in the homogeneous shear
flow case [1–4,6]. The symmetry is different and the an-
isotropy here is due to the inhomogeneity. We think that
this is the principal agent for the difference in the anisot-
ropy structure of the small scale in these two flows. The
reduction of the skewness negativity in directions parallel
to the mixing (relative elongation with respect to the iso-
tropic situation) and the enhancement of the negativity
across the mixing (relative compression with respect to
isotropy) should also be linked to the incompressibility of
the flow. These effects also persist at moderate Reynolds
numbers; therefore, the asymptotic approach to the local
isotropy, if present, is very slow.
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