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At a fixed distance from the body which creates the wake, entrainment is only seen to increase with the

Reynolds number (R) up to a distance of almost 20 body scales. This increase levels up to a Reynolds

number close to the critical value for the onset of the first instability. The entrainment is observed to be

almost extinguished at a distance which is nearly the same for all the steady wakes within the R range

here considered, i.e. [20–100], which indicates that supercritical steady wakes have the same entrainment

length as the subcritiacal ones. It is observed that this distance is equal to a number of body lengths

that is equal to the value of the critical Reynolds number (∼ 47), as indicated by a large compilation

of experimental results. A fortiori of these findings, we propose to interpret the unsteady bifurcation as

a process that allows a smooth increase-redistribution of the entrainment along the wake according to

the weight of the convection over the diffusion. The entrainment variation along the steady wake has

been determined using a matched asymptotic expansion of the Navier–Stokes velocity field [D. Tordella,

M. Belan, Phys. Fluids 15 (7) (2003) 1897] built on criteria that include the matching of the transversal

velocity produced by the entrainment process.

 2009 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of entrainment and mixing is of considerable in-

terest in engineering applications concerning pollutant dispersal or

combustion, but it is also of great relevance in geophysical and

atmospherical situations. In all these instances, flows tend to be

complex. In most cases, entrainment is a time dependent multi-

stage process in both the laminar and turbulent regime of motion.

The entrainment of external fluid in a shear flow such as

that of a wake or a jet is a convective-diffusive process which

is ubiquitous when the Reynolds number is greater than about

a decade. It is a key phenomenon associated to the lateral mo-

mentum transport in flows which evolve about a main spatial

direction. However, quantitative data concerning the spatial evolu-

tion of entrainment are not frequent in literature and are difficult

to determine experimentally. Quantitative experimental observa-

tions are very cumbersome to obtain either in the laboratory or

in the numerical simulation context. In some cases, such as, for

instance, fluid entrainment by isolated vortex rings, theoretical

studies (Maxworthy, 1972 [1]) predate experimental observations

(Baird et al., 1977 [2]; Müller and Didden, 1980 [3]; Dabiri and

Gharib, 2004 [4]).
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It is interesting to note that more attention has been paid to

complex unsteady and highly turbulent configurations in literature

than to their fundamentally simpler steady counterparts.

In unsteady situations, entrainment is believed to consist of

repeated cycles of viscous diffusion and circulatory transport. In

turbulent flows, a sequence of processes is observed, where the

exterior fluid is first ingested by the highly stretched and twisted

interior turbulent motion (large-scale stirring) and is then mixed to

the molecular level by the action of the small-scale velocity fluctu-

ations, see for instance the recent experimental works carried out

on free jets by Grinstein, 2001 [5] or on a plane turbulent wake by

Kopp et al., 2002 [6].

In steady laminar shear flows, stretching dynamics is generally

absent (as in 2D flows) or is close to its onset. In this case, en-

trainment is determined by the balance between the longitudinal

and lateral nonlinear convective transport and the mainly lateral

molecular diffusion.

Air entrainment in free-surface flows is another important in-

stance of the entrainment process. The mechanism is complex and

is also significant in nominally steady flows e.g., a waterfall, or

a steady jet. In such flows, entrainment is produced through the

generation of cavities that can entrap air. The cavities are due to

the impingement of the falling jet, which free-surface is usually

strongly disturbed, over the liquid surface of the pool. As observed

in Ohl et al. 2000 [7], the generation process takes advantage of

both the kinetic energy of the jet surface disturbances and of part

of the actual energy in the jet.

0375-9601/$ – see front matter  2009 Elsevier B.V. All rights reserved.
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Fig. 1. Sketch of the physical problem. Longitudinal velocity profiles (solid lines) at

R = 60 and at stations x = 7, x = 17.

In this Letter, we consider the steady two-dimensional (2D)

wake flow past a circular cylinder. We deduce the entrainment

as the longitudinal variation of the volume flow defect using a

matched Navier–Stokes asymptotic solution determined in terms

of inverse powers of the space variables (Belan and Tordella, 2002

[8]; Tordella and Belan, 2003 [9]), see Section 2. This approximated

(2D) solution was obtained by recognizing the existence of a lon-

gitudinal intermediate region, which introduces the adoption of

the thin shear layer hypothesis and supports a differentiation of

the behaviour of the intermediate flow with respect to its infinite

asymptotics. The streamwise behaviour of the entrainment is pre-

sented in Section 3. The concluding remarks are given in Section 4.

2. Analytical approximation of the velocity field, velocity flow

rate defect and entrainment

For an incompressible, viscous flow behind a bluff body, the

adimensional continuity and Navier–Stokes equations are ex-

pressed as

u∂xu + v∂yu + ∂xp = R−1∇2u, (1)

u∂xv + v∂yv + ∂yp = R−1∇2v, (2)

∂xu + ∂yv = 0 (3)

where (x, y) are the adimensional longitudinal and normal coor-

dinates, (u, v) the adimensional components of the velocity field,

p the pressure and R the Reynolds number. The physical quantities

involved in the adimensionalization are the length D of the body

that generates the wake, the density ρ and the velocity U of the

free stream, see the flow schematic in Fig. 1. The Reynolds num-

ber is defined as R = ρUD/µ, where µ is the dynamic viscosity

of the fluid.

The velocity field for the intermediate region of the 2D steady

wake behind a circular cylinder was obtained by matching an inner

solution — a Navier–Stokes expansion in negative powers of the

inverse of the longitudinal coordinate x

f i = f i0(η) + x−1/2 f i1(η) + x−1 f i2(η) + · · · (4)

where f is a generic dependent variable and where the quasi-

similar transformation η = x−1/2 y is introduced, and an outer so-

lution, which is a Navier–Stokes asymptotic expansion in powers

of the inverse of the distance r from the body

fo = fo0(s) + r−1/2 fo1(s) + r−1 fo2(s) + · · · (5)

where r =
√

x2 + y2 and s = y/x.

The wake mass-flow deficit of the inner field was considered

by means of an infield boundary condition carefully accounting for

it. In fact, this condition is placed at the beginning of the inter-

mediate flow region which inherits the full dynamics properties of

near field. To this aim, we took advantage of experimental velocity

and pressure profiles, as usually done in many physical contexts

and as suggested, in the present context, by Stewartson, 1957 [10].

Further details about the use of this infield condition are given below. It

should be noted that the matched expansion in ranging from mi-

nus infinity to plus infinity in the transversal flow direction and

that the concept of wake flow is clearly defined downstream from

the intermediate region where the thin layer hypothesis starts to

apply. The relevant boundary conditions involve, aside the infield

condition, symmetry to the longitudinal coordinate and uniformity

at infinity, both laterally and longitudinally. For details on the ex-

pansion term determination, the reader can refer to Tordella and

Belan, 2003 [9].

The physical quantities involved in the matching criteria are

the vorticity, the longitudinal pressure gradients generated by the

flow and the transversal velocity produced by the mass entrain-

ment process. The composite expansion is defined as fc = f i + fo −
fcommon , where fcommon is the common part of the inner and outer

expansions. In Tordella and Belan, 2003 [9] the explicit inner and

outer velocity and pressure expansions can be found up to order

four (i.e. O (x−2) and O (r−2), for the inner and outer wake, respec-

tively), the composite approximation has been shown graphically.

In this work, we approximate the wake flow with the compos-

ite solution obtained by truncating the inner and outer expansions

at the third order term and then by determining their common

part by taking the inner limit of the outer approximation. For the

reader’s convenience, the inner and outer velocity component ex-

pansion terms are listed below (see Eqs. (9)–(23)). The common

part has not been included because it has an analytical repre-

sentation which alone would take up a few pages. However, the

©Mathematica file that describes its analytical structure and which

allows its computation is given in the EPAPS online repository (see

Supplementary material). The common expansion was obtained by

writing the inner and outer expansions in the primitive indepen-

dent variables and by taking the inner limit of the outer expansion,

that is, by taking the limit for s → 0 and r → ∞. To this end, the

Laurent series of the outer expansion about x → ∞ was considered

up to the first order. The composite expansion — which is, by con-

struction, a continuous curve, since it is obtained by the additive

composition of three continuous curves, the sum of the inner and

outer expansions minus the part they have in common — is accu-

rate if the common expansion is accurate. This is always obtained

if, at each order, the distance δn = | f i,n − fo,n| between the inner

and the outer expansions is bounded and is at most of the same

order as the range of f i and fo . In the present matching, we have

verified that in the matching region — that is, in the region where

the composite connects the inner and the outer expansions — the

distance δn is not only bounded, but is small with respect to the

ranges of f i and fo .

The velocity approximation is shown in Figs. 2 and 3, where the

longitudinal and transversal components of the composite solution

for the velocity field are plotted for different longitudinal stations

and Reynolds numbers.

It should be noted, that in this analytical flow representa-

tion, a few key properties of the wake flow have been taken

into account. These properties can help an accurate descrip-

tion of the entrainment process to be obtained. These properties

are:

(i) The existence of intermediate asymptotics for the wake flow,

in the general sense as given by Barenblatt and Zeldovich [11]. This

is an important point, because the existence of the intermediate

region supports the adoption of the thin shear layer hypothesis

and relevant near-similar variable transformations for the inner

flow, while, at the same time, it also supports a differentiation of
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Fig. 2. Velocity profiles at the downstream stations x = 20, x = 80 and for R = 20, 40, 60, 80 and 100. (a), (b) Longitudinal velocity u, x = 20 and x = 80, (c), (d) transversal

velocity v , x = 20 and x = 80. The comparison with the numerical results by Berrone (2001) (triangles, R = 34, x = 20) and the laboratory data by Kovasznay (1948) (circles,

R = 34, x = 20) is shown in part (a).

Fig. 3. Velocity profiles for R = 30, 60 plotted at stations x = 10, 20, 40, 60, 80 and 100. (a), (b) Longitudinal velocity u, R = 30 and R = 60, (c), (d) transversal velocity v ,

R = 30 and R = 60. The comparison with the experimental data by Nishioka and Sato (1974) (squares, R = 40, x = 7), Paranthoen et al. (1999) (triangles, R = 34, x = 10) and

Takami and Keller (1969) (circles, R = 40, x = 7) is shown in part (a).
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the behavior of the intermediate flow with respect to its infinite

asymptotics (Oseen’s flow).

(ii) The use of an in-field boundary condition which consists of

the distribution of the momentum and pressure at a given section

along the mainstream of the flow in opposition to the use of in-

tegral field quantities. This kind of boundary condition is not new

in literature [10], and presents the evident advantage of having a

higher degree of field information with respect to the use of in-

tegral quantities such as the drag or the lift coefficients (a given

integral value can be obtained from many different distributions).

(iii) The acknowledgment of the fact that in free flows, such as

low Reynolds numbers — 2D or axis-symmetric — wakes or jets

developing in an otherwise homogeneous and infinite expanse of

a fluid, the main role in shaping the flow is played by the inner

flow. This directly inherits the main portion of the convective and

diffusive transport of the vorticity, which is created, at the solid

boundaries, by the motion of the fluid relative to the body. For

these flows, it is physically opportune to denote the “inner” flow

as the straightforward or basic approximation. This means that, up

to the first order, the inner solution is independent of the outer

solution. According to this, the Navier–Stokes model, coupled with

the thin layer hypothesis, very naturally yields the order of the

field pressure variations O (x−2). Pressure variations were often

overestimated at O (x−1) [9,12]. This was due to the use, in the in-

ner expansion, of the assumption that the field can accommodate

an inner pressure which is independent of the lateral coordinate,

which however varies at the leading orders along the x coordi-

nate. However, at intermediate values of y and for fixed x, this

assumption is responsible for an anomalous rise in the composite

expansion, due to the central plateau that appears in the outer ex-

pansion. The outer solution is in fact biased at finite values of x

to values greater than 1 and forces the composite expansion to as-

sume inaccurate values — with respect to experimental results —

mostly in the region around y/D ≈ 2 and outwards (at y/D = 20

the longitudinal velocity is still appreciably different from U ). For

details, the reader may refer to Section IV and Fig. 6 in Tordella

and Belan, 2003 [9].

(iv) Last, we would like to point out that we have used the

Navier–Stokes equations in the whole field, without the addition

of any further restrictive axiomatic position, such as the principle

of exponential decay. This did not prevent our approximated solu-

tion from spontaneously showing the properties of rapid decay and

irrotationality at the first and second orders for the inner and the

outer flows, respectively. At the higher orders, which mainly influ-

ence the intermediate region, the decay becomes a fast algebraic

decay.

For an unitary spanwise length, the defect of the volumetric

flow rate D is defined as

D(x) =
+∞
∫

−∞

(

1− u(x, y)
)

dy (6)

and is approximated through uc = uc(x, y), the composite solution

for the velocity field, as

D(x) ≈
+∞
∫

−∞

(

1− uc(x, y)
)

dy. (7)

Entrainment is the quantity that takes into account the varia-

tion of the volumetric flow rate in the streamwise direction, and is

defined as

E(x) =
∣

∣

∣

∣

dD(x)

dx

∣

∣

∣

∣

. (8)

The sequence of the first four terms of the inner and outer

approximation for the streamwise velocity and the transversal ve-

locity is given in the following.

Zero order, n = 0,

ui0(x, y) = c0, (9)

v i0(x, y) = 0, (10)

uo0(x, y) = k0, (11)

vo0(x, y) = 0 (12)

with c0 = 1, k0 = 1.

First order, n = 1

ui1(x, y) = −Ac1e
−Ry2/(4x)x−1/2, (13)

v i1(x, y) = 0, (14)

uo1(x, y) = 0, (15)

vo1(x, y) = 0 (16)

with c1 = 1, while the constant A is related to the drag coefficient

(A = 1
4
(R/π)1/2cD(R)).

Second order, n = 2

ui2(x, y) = −
1

2
A2e−Ry2/(4x)

[

e−Ry2/(4x)

+
1

2

y
√
x

√
π R erf

(

1

2

√

R

x
y

)]

x−1, (17)

v i2(x, y) = −
A

2

y
√
x
e−Ry2/(4x)x−1, (18)

uo2(x, y) = 0, (19)

vo2(x, y) = 0. (20)

Third order, n = 3

ui3(x, y) = A3e−Ry2/(4x)

(

2− R
y2

x

)[

1

2
c3 − RF3(x, y)

]

x−3/2,

v i3(x, y) = −
A2

2

{

−
1

2

y
√
x
e−Ry2/(2x) −

√

π

2R
erf

(

√

R

2x
y

)

+
(

1

2

√

π

R
−

√
π R

4

y2

x

)

e−Ry2/(4x) erf

(

1

2

√

R

x
y

)}

x−3/2,

uo3(x, y) = R

(

i

3
k31e

(3i/2)arctan(s) + k33
s
3/2
+
s3/2

+
1

2
k32s

−3/2s
3/2
+

×
{

√
(1+ is)s( 3

4
− i

i+s
)

2(i + s)
+

(−1)1/4

16
√
2

× log

[ ( i−1√
2

+
√
s)( i−1√

2
− (1− i)

√
1+ is +

√
s)

( 1−i√
2

+
√
s)( 1−i√

2
+ (1− i)

√
1+ is +

√
s)

]})

,

vo3(x, y) = R

(

e(3i/2)arctan(s)

[

k31 + k32s
+ s + i

3(s − i)2

])

(21)

where c3 = −2.26605+ 0.15752R − 0.00265R2 + 0.00001R3 , F3 is

the third order of the function

Fn(x, y) =
1

√
x

y
∫

0

eRζ 2/(4x)

Hr2n−1(x, ζ )Gn(x, ζ )
dζ, (22)

Gn(x, y) = A−n 1
√
x

y
∫

0

Mn(x, ζ )Hrn−1(x, ζ )dζ (23)
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where Mn(x, y) is the sum of the non-homogeneous terms of the

general ordinary differential equation for the inner solution coeffi-

cients (φn), n > 1, obtained from the x component of the Navier–

Stokes equation [8,9], and Hrn−1(x, y) = Hn−1(
1
2

√

R
x
y), where Hn

are Hermite polynomials. In the outer terms, the variables r, s, s±

are defined as r =
√

x2 + y2 , s = y/x, s± = (1+ s2)±1/2 and the rel-

evant constants are k31 = ± 1
2
A2/2

√
π/(2R), k32 = 3ik31 , k33 = 0.

3. Discussion of the results

Before describing the entrainment features we have observed,

let us first discuss the asymptotic behaviour of the inner expansion

in the lateral far field, since this aspect is important to determine

the entrainment decay. At finite values of x, the inner stream-

wise velocity decays to zero as a Gaussian law for n = 1 and as

a power law of exponent −2 for n = 2 and of exponent −3 for

n > 3. The cross-stream inner velocity goes to zero for n = 0,1 and

to a constant value for n > 2. This allows v to vanish as x−3/2

for x → ∞. When x → ∞ this approximation coincides with the

Gaussian representation given by the Oseen approximation. It can

be concluded that, at Reynolds numbers as low as the first critical

value and where the non-parallelism of the streamlines is not yet

negligible, the division of the field into two basic parts — an in-

ner vortical boundary layer flow and an outer potential flow — is

spontaneously shown up to the second order of accuracy (n = 1).

At higher orders in the expansion, the vorticity is first convected

and then diffused in the outer field. This is the dynamical context

in which the entrainment process takes place.

In Figs. 2(a) and 3(a), the longitudinal velocity profiles are con-

trasted with the experimental data available for steady flows, the

Direct Numerical Simulations by Berrone, 2001 [13], and Takami

and Keller, [14] (see also Figs. 8 and 9 in [16]), and the labora-

tory data by Paranthoen et al., 1999 [15], Nishioka and Sato, 1974

[16] and Kovasznay, 1948 [17]. The accuracy on the velocity dis-

tributions, between the analytical data and the laboratory ones is

lower than 5%. This estimate was obtained by contrasting the lon-

gitudinal velocity distribution u with the laboratory and numerical

distributions, considered as the reference distribution. To this end,

we computed the deviation 1ref = ‖u − uref‖0,x/‖1− uref‖0,x . At

R = 34, a deviation ≃ 4.5% was obtained for the laboratory re-

sults by Kowasznay, where x is the station at 20 diameters from

the center of the cylinder, see Fig. 2. As for the data by Berrone,

we find a 1ref of about 1.7%. At x ∼ 10 we have a comparison with

Paranthoen et al., Takami and Keller, and Nishioka and Sato, that

yields a deviation 1ref of about 2.5%, 5% and 1.5%, respectively, see

Fig. 3.

The entrainment is closely linked to the lateral and far field

asymptotic behaviour. Since a numerical experiment cannot be

over an unbounded domain of a flow, this approach is not suitable

for the study of the field asymptotic behaviour and, as a con-

sequence, entrainment (however, numerical simulations can yield

very accurate representations of the near field, in particular of the

standing eddy region). As far as entrainment is concerned, we then

contrasted our analytical data with laboratory data. We tried to ex-

ploit all the results available in literature, obtaining a comparison

with Paranthoen et al., 1999 [15] and Kovasznay, 1948 [17] because

these authors present a sequence of velocity profiles (mainly in su-

percritical flow configurations) that extend into the intermediate

wake. The comparison was instead not feasable with the data by

Nishioka and Sato, 1974 [16] since they mainly measured the near

wake (standing eddy region).

Fig. 4 shows the volumetric flow rate defect D = D(x; R) and

the entrainment E = E(x; R) obtained from the composite expan-

sion. It can be observed that the volumetric defect flow rate slowly

decreases with the distance from the body (Fig. 4(a)). This decrease

is faster at the beginning of the intermediate wake and at the

higher Reynolds values. Considering a fixed position x (Fig. 4(c)),

the flow defect decreases with the Reynolds number. Fig. 4(a) in-

cludes data from the laboratory experiments by Paranthoen et al.

(1999, R = 53.3) and Kovasznay (1948, R = 56), both carried out at

a slight supercritical R (unsteady regime). The difference between

their results in not small, but it should be recognized that the dif-

ficulties in measuring at small values of the Reynolds number are

exceptionally high. By considering the arithmetic mean between

these two sets of data, an increase of more than 50% with regards

to the values of the steady configuration, for x < 20, is observed.

It is also observed that the numerical simulation by Takami and

Keller (1969, R = 40) compare very well with the experiment by

Paranthoen et al.

Parts (b), (d) of Fig. 4 concern the entrainment, that is, the

spatial rate of change of the wake velocity defect. The impor-

tant points are: – the initial high variation at the beginning of

the intermediate part of the wake, which increases with R , – the

higher experimental mean value near x = 10 (2.45 × 10−2 against

6.5 × 10−3), – for all the R , the exhaust of the entrainment at

a distance of about 50 body lengths, – the collection of experi-

mentally determined values of the critical R number that has a

median value of 46.6: a fact that relates the entrainment exhaust

length — EEL — to Rcr with a simple scaling, such as EEL ∼ Rn
cr

with n = 1. In Fig. 4(d), one can also observe that at a constant

distance x from the body, the entrainment stops growing beyond

around Rcr .

Though the connection between the entrainment length and

the instability cannot be direct: – the first can be deduced as an in-

tegral property of the steady fully nonlinear version of the motion

equations, – the second from the linear theory of stability, which is

conceived to highlight the role of the perturbation characteristics

and not of the integral properties of the basic flow, these results

could be a fortiori used to interpret the bifurcation to the unsteady

flow condition at Rcr as a process that allows the wake to tune

the entrainment, and, possibly, to redistribute it on a larger wake

portion, according to the actual R value.

It can be noticed that the decay distance is of the same or-

der of magnitude as Rcr and this shows that the scaling used in

recent stability analyses [18,19] to represent the slow time and

space wake evolution — τ = εt and ξ = εx, where ε = 1
R

∼ 1
Rcr

—

is linked to the exhaust of the entrainment process. In fact, one

can say that the unit value of the slow time and spatial scales is

reached where the entrainment nearly ends.

4. Conclusions

The entrainment is observed to be intense in the interme-

diate wake downstream from the separation region where the

two-symmetric standing eddies are situated. Here, the dependence

on the Reynolds number is clear. The entrainment grows six-fold

when R is increased from 20 to 100. The subsequent downstream

evolution presents a continuous decrement of the entrainment. For

all the R here considered, it has been observed that this decrease

is almost accomplished at a distance from the body of about 50 di-

ameters, which is a value that is close to the critical value Rcr for

the onset of the first instability and the subsequent set up of the

unsteady regime (the median value in literature being Rcr = 46.6).

The establishment of the unsteady regime could be interpreted

as a way of overcoming the limitation on the entrainment inten-

sity and decay imposed by the steady regime. The observed decay

length confirms the validity of the scaling that is often adopted in

wake stability studies carried out using the spatial and temporal

multitasking approach.
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Fig. 4. (a), (b): Downstream distribution of the volumetric flow rate defect D and entrainment E for R = 20,40,60,80 and 100. (c), (d): Volumetric flow rate defect D and

entrainment E as a function of the R for different stations (x = 8,10,20,40,80). The values of the volumetric flow rate defect D for the oscillating (supercritical) wake, as

inferred from experimental data by Kovasznay (1948, R = 56), Takami and Keller (1969, R = 40) and Paranthoen et al. (1999, R = 53.3), are also shown in part (a). The values

of the critical Reynolds number obtained from different numerical and experimental results are placed at a distance from the body, xe , equal to Rcr , see part (b). Position

xe is observed to be the wake length where the entrainment is almost extinguished ∀R ∈ [20,100], which leads to the hypothesis that the steady wake becomes unstable

at a Reynolds number that is equal to the normalized distance where the entrainment almost ends and to the value beyond which the entrainment, at a constant distance

from the body, stops growing (see part (d)). The symbols represent data from: Norberg, 1994 [20] (Q), Zebib, 1987 [21] (E), Pier, [22] 2001, (×), Williamson, [23] 1989 (P),

Leweke and Provansal, [24] 1995 (+), Strykowski and Sreenivasan, [25] 1990 (∗), Coutanceau and Bouard, [26] 1977 (!), Elsenlhor and Eckelmann, [27] 1989 ("), Hammache

and Gharib, [28] 1989 (2), Jackson, [29] 1987 (1), Ding and Kawahara, [30] 1999 (F), Morzynski et al., [31] 1999 (e), Kumar and Mittal, [32] 2006 (a). The solid line in

parts (b) and (d) indicates the median value (Rcr ≈ 46.6) of these data.
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