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Summary. A method for the localization of the regions where the turbulent fluc-
tuations are unresolved is applied to the selective large-eddy simulation (LES) of
a compressible turbulent jet of Mach number equal to 5. This method is based on
the introduction of a scalar probe function f which represents the magnitude of the
twisting-stretching term normalized with the enstrophy [1]. The statistical analysis
shows that, for a fully developed turbulent field of fluctuations, the probability that
f is larger than 2 is zero, while, for an unresolved field, is finite. By computing
f in each instantaneous realization of the simulation it is possible to locate the
regions where the magnitude of the normalized stretching-twisting is anomalously
high. This allows the identification of the regions where the subgrid model should
be introduced into the governing equations (selective filtering).

The results of the selective LES are compared with those of a standard LES,
where the subgrid terms are used in the whole domain. The comparison is carried
out by assuming as high order reference field a higher resolution Euler simulation
of the compressible jet. It is shown that the selective LES modifies the dynamic
properties of the flow to a lesser extent with respect to the classical LES.

1 Small scale detection criterion

The regions where the fluctuations are unresolved are located by means of the

scalar probe function (in the following called small scale localization criterion)
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where u is the velocity vector, w = V x u is the vorticity vector and the
overbar denoted the statistical average. Function (1) is a normalized scalar
form of the vortex-stretching term that represents the inertial generation of

f(u7w> =
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three dimensional vortical small scales. When the flow is three dimensional
and rich in small scales f is necessarily different from zero. In two-dimensional
it is equal to zero. The mean flow is subtracted from the velocity and vorticity
fields in order to consider the fluctuating part only of the field. The statistical
distribution of f has been computed in a fully resolved turbulent fluctuation
field (DNS of a homogenous and isotropic turbulent flow (10242, Re) = 230,
data from [2])) and in some unresolved instances obtained by filtering this
DNS field on coarser grids (from 5123 to 64%).

Figure 1(a) shows the probability that f > ¢, for all the resolutions con-
sidered: the probability that f assumes values larger a given threshold ¢,
is always higher in the filtered fields and increases when the resolution is re-
duced. The difference between the probabilities in fully resolved and in filtered
turbulence is maximum when t,, € [0.4,0.5] for all resolutions, see figure 1(b).
In such a range the probability p(f > t,) in the less resolved field is about
twice the probability in the DNS field. This can lead to the introduction of a
threshold t,, of the values of f, such that, when f assumes larger values the
field could be considered locally unresolved and should benefit from the local
activation of the Large Eddy Simulation method (LES) by inserting a subgrid
scale term in the motion equation. The values of this threshold can be chosen
to be equal to that where the difference between the resolved and unresolved
field is maximum, that is t, =~ 0.4.
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Fig. 1. (a) Distribution of the probability of having f for different resolutions of
incompressible homogeneous and isotropic turbulence; (b) comparison between the
probability in the filtered fields and in the unfiltered 1024* DNS field [2].

In order to investigate the presence of regions with anomalously high values
of f, a set of tests have been carried out on existing Euler simulations of the
temporal evolution of a perturbed, initially cylindrical, jet of initial M = 5 and
density ratio between the ambient medium and the jet medium equal to 10, see
section 2 and [1]. The regions where f assumes values larger than 0.4 have been
filled in black in the visualizations shown in figure 2. According to the present
criterion, these black regions can be viewed as regions where small scales are
present and unresolved and where subgrid-scale terms should be introduced
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Fig. 2. Contour plots of the small scale function f = 0.4 in longitudinal sections
z = 0 at dimensionless time ¢ = 20: (a) simulation with 128° grid points, (b)
simulation with 256° grid points.

into the governing equations. It should be noted, that this statistical analysis
is funded on the Morkovin hypothesis that the compressibility effects do not
have much influence on the turbulence dynamics, apart from varying the local
fluid properties [4].

2 Results

We have studied numerically, and in Cartesian geometry, the temporal evolu-
tion of a 3D jet subject to periodicity conditions along the longitudinal direc-
tion. The flow is governed by the ideal fluid equations for mass, momentum,
and energy conservation:
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where the fluid variables p, p and u; and E are, as customary, the pressure,
density, velocity, and total energy respectively; and where T{ZGS and ¢7¢%
are the subgrid stress tensor and total enthalpy flow, respectively. H(-) is the
Heaviside step function, thus the subgrid scale fluxes are applied only in the
regions where f > t,,. The threshold ¢, is taken equal to 0.4, which is the value
for which the maximum difference between the probability density function
p(f > tu) between the filtered and unfiltered turbulence was observed (see
fig.1). Diffusive terms have been neglected in equations (2-4) as in the very
high Reynolds number free flow we are trying to simulate they will be smaller
of both the subgrid terms and the numerical diffusivity of the scheme. The
initial flow structure is a cylindrical jet in a parallelepiped domain, described
by a cartesian coordinate system (z,y, z). The initial jet velocity is along the
y-direction; its symmetry axis is defined by (x = 0, z = 0). The initial jet
velocity, at t = 0, is V,(x, z) = V, within the jet, i.e. for (z, z) < R, where R is
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the initial jet radius, and Vj(x, z) = 0 elsewhere. The initial density is set to
p(y, z) = po within the jet and p(y, z) = vpg outside, with v the initial density
ratio of the external medium to jet proper. Finally, we assume that the jet
is initially in pressure equilibrium with its surroundings; for this reason, we
assume an initially uniform pressure distribution py, see [3 for further details..

In the following, we will express lengths in units of the initial jet radius
R, times in units of the sound crossing time of the radius R/cy (with ¢ =
/I'po/po), velocities in units of ¢y (thus coinciding with the initial Mach
number), densities in units of py and pressures in units of po.

The standard Smagorinsky model with Cs = 0.1 has been implemeted as
subgrid model, the turbulent Prandtl number is taken equal to 1. Equations
(2-4) have been solved using an evolution of the PLUTO code [5], which is a
Godunov-type code that supplies a series of high-resolution shock-capturing
schemes that are particularly suitable for the present application. In order to
discretize the Euler equations, we chose a version of the Piecewise-Parabolic-
Method (PPM), which is third order accurate in space and second order in
time.

The domain size is a 47 x 107 x 47 parallelepiped, with y along the initial
jet velocity, covered by a uniform cartesian grid with 128 x 320 x 128 points (for
the high resolution reference simulation the grid points were 256 x 640 x 256).
We have adopted periodic boundary conditions in direction y and outflow
conditions in the other directions.

Two additional simulations have also been performed for comparison. A
standard non selective LES where the subgrid model was introduced in the
whole domain, which is obtained by putting H = 1 in (2-4), and a higher
resolution (640 x 2562) Euler simulation obtained by putting H = 0.

A visualization of the pressure field in a longitudinal section at ¢ = 36
can be seen in figures 3(a-c) for the 3 cases (selective LES, classical LES, high
resolution Euler simulation). The comparison shows the higher smoothing and
small scale suppression produced by the non selective use of the subgrid model.
The time evolution of the enstrophy distribution at two time instants far from
the initial one is shown in figure 4 as a function of the distance from the centre
of the jet. While the agreement between the enstrophy distribution obtained
with the selective LES simulation and with the reference high resolution Euler
simulation is very good, the non selective simulation damps out the vorticity
magnitude in the very center of the jet and in the outer part, and introduces
a spurious accumulation in the intermediate radial region. As a results, the
vorticity dynamics is highly modified. This is also evident when observing the
spectrum of the turbulent kinetic energy. Figure 5 shows the kinetic energy
spectrum in the intermittent region between the jet core and the surrounding
ambient. In the non selective LES, for ¢ = 28, there is a concentration of
energy in the low wavenumber region, which becomes even more pronounced
for t = 36. This is consistent with the higher level of enstrophy seen in figure 4
at the same distance from the centre of the jet. Thus, we can observe that the
selective introduction of the subgrid model yields distributions much closer,
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Fig. 3. Pressure distribution in a longitudinal section at ¢ = 36: (a) selective LES,
(b) standard LES, (c) higher resolution pseudo-DNS. The figures show the contour
levels of log,,(p/po), the mean flow is from bottom to top.

35
E 10}
30f t=28 i t=36
25 -~ Euler High Res. 8 Euler High Res.
e b iy mmmees Selective LES e P e Selective LES
320 - it Standard LES I R Standard LES
VR e 6k X~
3 [ i~ N \'\’
15f [~ \
[ S
r 4F 3
10F [ N
F N
r r N\
sk 2 B b Y
L N s
r D
ok 1 | -l RS et
6 0 1 2 3 4 5 6

Fig. 4. Radial distribution of the enstrophy, r is the distance from the axis of the
jet. All averages have been computed as space averages on cylinders.

with respect to the standard LES, to the distribution showns by the high
resolution Euler simulation.

3 Concluding remarks

In this work we have shown that the selective LES, which is based on the
use of a scalar probe function f — a function of the magnitude of the local
stretching-twisting operator — can be conveniently applied to the simulation
of compressible jets. The probe function f was coupled with the standard
Smagorinsky subgrid model. However, it should be noted that the use of f can
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Fig. 5. Spectra of the turbulent kinetic energy at r = 2, computed as the Fourier
transform of the two-point correlations of the fluctuating kinetic energy p(u?)/2.

be coupled with any model because f simply acts as an independent switch for
the introduction of a subgrid model. The comparison among the three kinds
of simulation (selective LES, standard LES, high resolution reference) here
carried out shows that this method can improve the dynamical properties of
the simulated field, in particular, the spectral and vorticity distributions.
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