
Documentation

A Galerkin method with Chandrasekhar
functions for the Orr-Sommerfeld/Squire

initial-value problem

Federico Fraternale

Department of Mechanical and Aerospace Engineering
Politecnico di Torino, Torino, Italy 10129

December 20, 2015

Contents

1 A Chandrasekhar eigenfunction expansion method to solve the
linearized initial value problem 2
1.1 Solution to v̂ equation . 2
1.2 Solution to the nonhomogeneous ω̂y equation 6
1.3 Convergence . 9

2 The numerical code (Matlab R©) 10
2.1 compute eigenvalues.m . 11
2.2 compute matrices.m . 11
2.3 main ivp galerkin 1.0.m . 11
2.4 solve squire.m . 13
2.5 Variables and flowchart . 13

References 16

1

1 A Chandrasekhar eigenfunction expansion method to solve

the linearized initial value problem

In this section, the mathematical formulation for a Galerkin method - based on
an eigenfunctions expansion in terms of the Chandrasekhar functions [1] - to solve
the Orr-Sommerfeld and Squire initial value problem, is presented. The method is
valid for every parallel base flow with homogeneous (no-slip) boundary conditions
for the perturbations. This is a exention to the three-dimensional case and to the
non modal problem, of the method by Gallagher & Mercer [3] which was based on
the use of Chandrasekhar’s functions to solve the bidimensional modal perturbative
problem for the Couette flow.

The IVP in the wall-normal velocity and vorticity (Orr-Sommerfeld/Squire non-
modal problem) is considered:

∂t∂
2
y v̂ − k2∂tv̂ + iαU(y)∂2

y v̂ − iαk2U(y)v̂ − iαU ′′(y)v̂

− 1

Re

(
∂4
y v̂ − 2k2∂2

y v̂ + k4v̂

)
= 0 (1)

∂tω̂y + iαU(y)ω̂y −
1

Re

(
∂2
y ω̂y − k2ω̂y

)
= −iγU(y)′v̂ (2)

v̂(y = ±1, t) = ∂yv̂(y = ±1, t) = ω̂y(y = ±1, t) = 0 (3)

v̂(y, t = 0) = v̂0(y) ω̂y(y, t = 0) = ω̂y0(y) (4)

1.1 Solution to v̂ equation

The solution of (1) can be expressed as a generalized Fourier expansion with
time-dependent coefficients:

v̂(y, t) =
∞∑
n=1

cn(t)Xn(y) y ∈ [−1, 1], (5)

where Xn(y) are orthogonal functions, and the following inverse transform applies:

cn(t) =

∫ 1

−1
v̂(y, t)Xn(y) dy∫ 1

−1
Xn(y)Xn(y) dy

. (6)

Since in the initial value problem both the initial condition and the boundary
conditions need to be imposed, it is worthwhile to consider functions that satisfy
the boundary conditions. Moreover note that the coefficients cn of the series are in

2

general complex, since v̂ is complex-valued and the spatial modes are considered
as real. The particular orthogonal functions which we use are those defined by the
following fourth order eigenvalue problem

d4

dy4
X(y) = λ4X(y) y ∈ [−1, 1] (7)

X(y = ±1) = 0
d

dy
X(y = ±1) = 0. (8)

Two different sets of eigenvalues and the corresponding eigenfunctions are found,
respectively odd and even, by numerically solving the following transcendental
equations

tan(λn)− tanh(λn) = 0 (odd set) (9)

tan(λn) + tanh(λn) = 0 (even set). (10)

The corresponding normalized eigenfunctions (figure 1) are

Xn =
1√
2

[
sinh(λny)

sinh(λn)
− sin(λny)

sin(λn)

]
n = 1, 3, 5.., N − 1 (11)

(odd set)

Xn =
1√
2

[
cosh(λny)

cosh(λn)
− cos(λny)

cos(λn)

]
n = 2, 4, 6.., N (12)

(even set).

Similar functions, in a different domain, have been used in the study of the circular
Couette flow between coaxial cylinders [1, appendix V].

Since the imaginary and the real part of the solution v̂ usually have opposite
parity, independently on the initial condition, both the odd and the even sets are
necessary to completely describe the problem and obtain the correct result.
In the following paragraphs a compact notation for the space derivatives is intro-
duced. In order to simplify the reading, the y-derivatives will be indicated with a
subscript. The temporal derivatives will be indicated explicitly or with a dot.

The numerical solution to the v̂ equation (1) is obtained by applying the varia-
tional Galerkin method. Truncating the series (5) at N functions and substituting
yields

3

−1.5 −0.5 0.5 1.5
−1

−0.6

−0.2

0.2

0.6

1

X
n

y

Odd Set

n=1

n=2

n=3

−1.5 −0.5 0.5 1.5
X

n

−1

−0.6

−0.2

0.2

0.6

1

y

n=1

n=2

n=3

Even Set

Fig. S 1: The basis eigenfunctions

ε(y, t; α, γ) =
N∑
n=1

d

dt
cn(t)Xnyy − k2

N∑
n=1

d

dt
cn(t)Xn

+ iαU(y)
N∑
n=1

cn(t)Xnyy − iαk2U(y)
N∑
n=1

cn(t)Xn

− iαd2U(y)

dy2

N∑
n=1

cn(t)Xn −
1

Re

N∑
n=1

cn(t)Xnyyyy

+
2k2

Re

N∑
n=1

cn(t)Xnyy −
k4

Re

N∑
n=1

cn(t)Xn. (13)

The error functional ε is minimized when it is orthogonal to the space of the
linearly independent trial functions Xn with n = 1, 2, ..N . In this context, given
two functions u(y) and v(y) with y ∈ Ω = [−1, 1], the following definition of
scalar product applies

〈u, v〉 =

∫
Ω

u · v dy. (14)

With above notation the Galerkin orthogonality condition is expressed as

〈ε,Xm〉 = 0 m = 1, 2, ..., N. (15)

The Orr-Sommerfeld PDE is now reduced to a system of N ODEs of the first
order, where the time dependent coefficients cn(t) are the only unknowns.

4

0 =
N∑
n=1

d

dt
cn(t)〈Xnyy , Xm〉 − k2

N∑
n=1

d

dt
cn(t)〈Xn, Xm〉

+ iα
N∑
n=1

cn(t)〈U(y)Xnyy , Xm〉 − iαk2

N∑
n=1

cn(t)〈U(y)Xn, Xm〉

− iα
N∑
n=1

cn(t)〈d
2U(y)

dy2
XnXm〉 −

1

Re

N∑
n=1

cn(t)〈Xnyyyy , Xm〉

+
2k2

Re

N∑
n=1

cn(t)〈Xnyy , Xm〉 −
k4

Re

N∑
n=1

cn(t)〈Xn, Xm〉

n, m = 1, 2, 3, ..., N. (16)

The scalar products can be evaluated analytically or computed by numerical
integration:

Dm,n = 〈Xn, Xm〉 = δm,n (17)

Sm,n = 〈Xnyy , Xm〉 = (18)

=


+4 λ2nλ

2
m

λ4n−λ4m
(λnµn − λmµm) if (n+m) is even, n 6= m

0 if (n+m) is odd

−λ2
nµ

2
n + λmµm if n = m

Fm,n = 〈Xnyyyy , Xm〉 = λ4
nδm,n (19)

U (1)
m,n = 〈U(y)Xnyy , Xm〉 (20)

U (2)
m,n = 〈U(y)Xn, Xm〉 (21)

U (3)
m,n = 〈d

2U(y)

dy2
XnXm〉, (22)

where

µn =
cosh(2λn)− cos(2λn)

sinh(2λn)− sin(2λn)
lim
n→∞

µn = 1. (23)

It is convenient to express the ODE system (16) in a compact notation: in
the following, vectors will be indicated either explicitly using braces or with bold
lower case letters; matrices will be indicated with bold capital letters; constants

5

with roman capital letters and physical parameters in italic. The system can be
written as

Hċ−Gc = 0, (24)

where

H = S− k2 D (25)

G = −iαU(1) + iαk2 U(2) + iαU(3)

+
1

Re
F− 2k2

Re
S +

k4

Re
D, (26)

where D = [Dm,n] etc., i.e. the element Dm,n is placed at the nth column and at
the mth row of the matrix. H is invertible, so denoting A = H−1 G yields

ċ−Ac = 0. (27)

The Orr-Sommerfeld equation is eventually reduced to a system of ODEs. The
complex eigenvalues µi of A constitute the spectrum. The general solution to the
system (27) in the case of matrix A having N distinct eigenvalues µi [5], reads

c(t) = K1 l1e
µ1t + K2 l2e

µ2t + . . .+ KN lNe
µN t (28)

where li are the eigenvectors corresponding to µi and Ki are constants to be deter-
mined by imposing the initial condition The coefficients at the initial time, c0, can
be obtained from the inverse transformation (6) since the initial condition v̂(t = 0)
is known, so finally the solution 28 is get by solving the algebraic system

c0 = K1 l1 + K2 l2 ++ KN lN (29)

{Ki} = L−1 c0. (30)

1.2 Solution to the nonhomogeneous ω̂y equation

In order to solve the Squire equation 2, a set of normal functions different from
the one adopted for the velocity is needed, since the second order PDE only requires
ω̂y to vanish at the boundaries, but not its first derivative. A simple choice for the
basis functions, here adopted, is the following

Yn = sin(ξny) n = 1, 3, 5, ...N − 1 (odd set) (31)

Yn = cos(ξny) n = 2, 4, 6, ...N (even set), (32)

where

ξn =
(n+ 1)π

2
n = 1, 3, 5, ...N − 1 (odd set) (33)

ξn =
(n− 1)π

2
n = 2, 4, 6, ...N (even set). (34)

6

Also in this case, note that two sets of eigenfunctions are put together to form
a unique set, since both are necessary to completely describe the complex-valued
normal vorticity. The general solution is then obtained as the sum of a particular
solution ω̂yp and the solution to the corresponding homogeneous equation ω̂yh :

ω̂y(y, t) = ω̂yh(y, t) + ω̂yp(y, t), (35)

ω̂y(y, t) =
∞∑
n=1

(bhn + bpn)(t)Yn(y). (36)

Applying the Galerkin method (and truncating the expansion to N terms) as
done in the previous section for the velocity, yields to the following forced ODE
set:

ḃ−
(
− iαU∗ +

1

Re
S∗ − 2k2

Re
D∗)︸ ︷︷ ︸

G∗

b = −iγ F∗︸ ︷︷ ︸
B

c (37)

ḃ−G∗ b = Bc, (38)

where the eigenvalues of G∗ constitute the spectrum of the Squire equation and

D∗m,n = 〈Yn, Ym〉 = δm,n (39)

S∗m,n = 〈Ynyy , Ym〉 = −ξ2
nδm,n (40)

U∗m,n = 〈U(y)Yn, Ym〉 (41)

F ∗m,n = 〈dU(y)

dy
Xn, Ym〉. (42)

For the plane Couette flow, analytical expressions are computed:

U∗m,n = 〈U(y)Yn, Ym〉 = (43)

=

{
0 if (n+m) is even, or n = m

(−1)
n+m+1

2 4ξnξm
(ξ2n−ξ2m)2

if (n+m) is odd

F ∗m,n = 〈dU(y)

dy
Xn, Ym〉 = (44)

=


2
√

2ξmξ2n(−1)
m+1

2

ξ4m−ξ4n
if n,m are odd

2
√

2ξmξ2n(−1)
m
2

ξ4m−ξ4n
if n,m are even

7

1.2.1 Particular solution bp

Since the solution (28) in terms of the expansion coefficients c(t) is a combination
of exponentials and represents the forcing term in (38), a particular solution bp in
the following form is sought:

bpn(t) =
N∑
j=1

anje
µjt, (45)

where anj are constants and µj are the eigenvalues of A (see eq. 28), through
which the forcing term is expressed. Yields:

ω̂yp(y, t) =
N∑
n=1

bpn(t)Yn(y). (46)

Diagonalizing the system (27), the coefficients of the normal-velocity result

c(t) = Lh = L


h01e

µ1t

h02e
µ2t

...
h0N e

µN t

 h0 = L−1 c(t = 0) (47)

Substituting the particular solution (45) in (38) and leads to

d

dt


a11e

µ1t + . . . a1Ne
µN t

...
aN1e

µ1t + . . . aNNe
µN t

+ G∗


a11e

µ1t + . . . a1Ne
µN t

...
aN1e

µ1t + . . . aNNe
µN t

 = BL


h01e

µ1t

h02e
µ2t

...
h0N e

µN t


(48)

It is straightforward to find the unknown constants anj by comparing terms with
the same exponential factor. This is equivalent to solve the following set of N
algebraic systems

(µjI−G∗)


a1j

a2j
...
aNj

 = h0j


B∗1j
B∗2j

...
B∗Nj

 j = 1, 2, ...N (49)

where I is the identity matrix and B∗ij are the elements of the matrix BL. As
usual, the first subscript indicates the row and the second one indicates the column.

8

Finally we get the matrix of coefficients column by column as:
a1j

a2j
...
aNj

 = (µjI−G∗)−1h0j


B∗1j
B∗2j

...
B∗Nj

 j = 1, 2, ...N. (50)

1.2.2 Homogeneous and complete solution b

The homogeneous solution of (38) takes the same form of the of equation (28).
Indicating with µ∗ and l∗ respectively the eigenvalues and eigenvectors of the
matrix G∗, it follows

bh(t) = C1 l
∗
1e
µ∗1t + C2 l

∗
2e
µ∗2t + . . .+ CN l∗Ne

µ∗N t (51)

Finally the complete solution is

b(t) = C1 l
∗
1e
µ∗1t + C2 l

∗
2e
µ∗2t + . . .+ CN l∗Ne

µ∗N t + bp(t) (52)

The unknown constants Ci depends on the initial condition, and can be calculated
setting t = 0 in the above expression, leading to

h∗
0 = {Ci} = L∗−1(b0 − b0p) (53)

1.3 Convergence

The Galerkin method was first applied to the Orr-sommerfeld modal equation
by [2]. They used normal functions that guarantee a 1/N4 convergence ratio.
Gallagher [3] used, for the modal problem, the Chandrasekhar-Reid functions and
the error decreased as 1/N5 with N → ∞ as shown in [4]. The fifth order of
accuracy is ensured for the present formulation as well, as shown in figure 2.

The method results to be fast and accurate in time and space. Since the time evo-
lution is analytically represented, the complete wave transient, up to the asymp-
tote, can be simulated without typical drawbacks of time-marching techniques.
Arbitrary initial conditions can be specified for bounded flows. The limits of the
method are related to the non-normality of the Orr-Sommerfefd and Squire oper-
ators. The non-normal effects act on the numerical procedure by worsening the
condition number of the eigenvector matrices. Anyway, the sensibility of the spec-
trum (especially at high Re and k values) is a property of the stability operator
and it is thus independent on the numerical scheme.

9

N

m
a

x
(ε

a
)

rm

s
(ε

a
)

Plane Poiseuille flow
Re=1000, k=2, φ=80°
Sym. i.c.

t
0
=100

Re(v), rms(ε
a
)

Im(v), rms(ε
a
)

Re(v), max(ε
a
)

Im(v), max(ε
a
)

N
−5

10-8

10-10

10-6

10-4

10-2

100

101 102
10-8

10-6

10-4

10-2

100

101

102

102

N
m

a
x
(ε

a
)

rm

s
(ε

a
)

N
−5

Plane Poiseuille flow
Re=1000, k=2, φ=80°
Sym. i.c.

t
0
=100

Re(ω
y
), rms(ε

a
)

Im(ω
y
), rms(ε

a
)

Re(ω
y
), max(ε

a
)

Im(ω
y
), max(ε

a
)

Fig. S 2: Maximum and rms of the absolute error of v̂ (left panel) and ω̂y (right panel) as
a function of the number of modes N for channel flow with t0 = 100, Re = 1000, k = 2,
φ = 80◦ and symmetrical initial condition. Continuous line: real part. Dashed line: imaginary
part. Magenta line: maximum absolute error. Blue line: rms of the absolute error. Black
line: accuracy trend N−5 [4]. Since the exact solution is not known, the residuals are defined
as the difference between the solution and an accurate solution computed with 350 modes.

εa(y, t) = |v̂N (y, t) − v̂N=350(y, t)|, rms(εa)(t) = 1
Ny

√∑Ny

i=1 ε
2
a(y, t), max(εa)(t) =

maxyi
(εa(y, t))

1.3.1 Derivatives of the solution

The analytical expressions for the derivatives of the basis functions are known.
Thereby, it is easy to investigate the convergence of the series obtained by termwise
differentiation. The Chandrasekhar functions series results to be derivable up to
the 3rd derivative. The 4th derivative does not converge at the boundaries. About
the Fourier series for the vorticity, the series can be derived termwise un to the
second derivative.

2 The numerical code (Matlab R©)

The method described above is implemented in matlab. Here we report a brief
description for each routine

10

2.1 compute eigenvalues.m

This routine creates the file eigenvalues.mat, containing the solutions (λi, stored
in the variable gtot) to equation 7. This file needs to be computed just once, we
already provide a file contaning the first 500 eigenvalues for both the symmetric
and antisymmetric sets. This allows to use up to 500 Chandrasekhar modes in the
main code, which is usually enough.

2.2 compute matrices.m

This is a matlab function invoked by the main program. It computes:

• the Chandrasekhar eigenfunctions (11,12) and their derivatives (remind that
the series 5 can be derivated termwise 3 times);

• the matrices (17-22) D, S, F,U1, U2,U3 . For the Couette flow, the analytical
expressions are used. Where these are not available, a numerical integration
is implemented using a fine grid (see main program);

• the eigenfunctions 31 for the wall-normal vorticity expansion, and their
derivatives (the Fourier series is derivable termwise once);

• the matrices (36-39), named DD, SS, UU and FORZ respectively, in the codes;

2.3 main ivp galerkin 1.0.m

Main program. Input parameters:

• k polar: polar wavenumber

• Re: Reynolds number

• phi: waveangle

• type: base flow type; in this version it can be either ’Poiseuille’,’Couette’,
or ’Wake’, but the user could specify any parallel base flow

• ic: initial condition label, in this version can be either ’sym’, or ’asym’

• N: number of modes used for the expansion. 200-300 usually works fine.
N must be even. Don’t exceed the number of eigenvalues saved in the file
eigenvalues.mat needed by the main code (we provide a file with 500 modes).

11

• h: step size of y-grid . This is the grid where the final solution is computed.
The user can specify whatever value for h. Indeed, the accuracy of the
solution won’t be affected by the numer of points of y, since the numerical
integrations are computed on a fine grid named yy. Notice however that the
integral energy, G is affected.

• hh: step size of fine y-grid (yy). This grid is used to compute the initial
coefficients, and the matrices needed by the galerkin method. A value of
2e-3 works fine. The accuracy of the solution depends on this grid

• y0: y observation point for the frequency temporal evolution

• tmax: maximum (nondimensional) time simulated

• nt: number of points of the coarse time-grid (see the flow-chart for further
detail on the temporal grids)

• dtf: spacing of fine time grid. See scheme in the flow-chart. The user
can choose if to use a regular time grid (NB: the semi-analytical method
allows to get the solution even at a single instant, nt can be an arbitrary
number ≥ 2), or a different grid built to allow an accurate computation of
time derivatives (4th order). We use this grid when we compute the wave
frequency transients, indeed the wave frequency in obtained as the time
derivative of the unwrapped phase. In this way, the user can compute the
correct frequency at the time instants he wants.

• x: stramwise position for the wake base flow

• realbound: the real limits of the domain. This is needed for the wake flow,
for which a wider domain (in terms of nondimensional units) is required. For
the bounded flows realbound is set equal to 1 automatically. NB: some scal-
ings are required in the procedure to take account of this domain stretching,
since the eigenfunctions (both Chandrasekhar and Fourier) are defined in
[-1,1] - see for example line 198 of the main code and line 7 of solve squire.m.
For the wake flow, we typically set realbound in [60,100] to get a good ap-
proximation of the unbounded domain.

Please refer to the flow-chart and to the comments in the scripts for further details.
The main code calls the function solve squire.m for 3D waves. Find below a table
with the references between the names of variables in the code and their names in
the first section of this pdf file. Just a few general comments:

1. The code allows to compute the solution (v̂, û, ŵ, ω̂x, ω̂y, ω̂z) at arbitrary
points (y,t). The accuracy of the solution is determined by the fine y-grid,

12

yy. For instance:
t=linspace(0,tmax,nt);→ solution from t = 0 to t = tmax

The user may want to observe only a limited range of time, for the same
simulation: t=linspace(20,30,nt);→ the solution (with the same initial
condition as the above case) is computed only from t = 20 to t = 30

2. The bounudary conditions for the perturbations are only no-slip. For un-
bounded flows, as the wake flow, other boundary conditions are theoretically
possible (for example the perturbations may be just bounded as y → ∞).
These boundary conditions are not implemented in this code.

3. The code is versatile, as the user could easily specify any other expression of
base flow, and initial conditions (satisfying the no-slip b.c.).

4. The initial y-vorticity is set to zero. This is done at lines 50-51 of the function
solve squire.m

5. ...

2.4 solve squire.m

This function is called my the main program after the solution of the Orr-
Sommerfeld ivp, at line 282. It is devoted to the solution of the forced Squire
equation.

2.5 Variables and flowchart

For the user convenience, we report in the following table the main variables in
the code, their size, and their corresponding variables as introduced in the first
section of this file.

13

code variable variable size
k polar k 1

Re Re 1

phi φ 1

N N 1

y,y2 y 1 x ny

y acc,y2 acc y 1 x ny acc

t t 1 x nt (ntf)

U,DU,D2U U, dU
dy
, d

2U
dy2

1 x ny

U acc,DU acc,D2U acc U, dU
dy
, d

2U
dy2

1 x ny acc

g λn (eq. 7) 1 x N

eigenmodes Xn(y) (eq. 11-12) ny x N

D1eigenmodes Xny(y) ny x N

D2eigenmodes Xnyy(y) ny x N

eigenmodes acc Xn(y) (eq. 11-12) ny acc x N

D1eigenmodes acc Xny(y) ny acc x N

D2eigenmodes acc Xnyy(y) ny acc x N

eigenmodes squire Yn(y) (eq. 31-32) ny x N

D1eigenmodes squire Yny(y) ny x N

eigenmodes squire acc Yn(y) (eq. 31-32) ny acc x N

D1eigenmodes squire acc Yny(y) ny acc x N

D D (eq. 17) N x N

S S (eq. 18) N x N

F F (eq. 19) N x N

U1 U(1)(eq. 20) N x N

U2 U(2)(eq. 21) N x N

U3 U(3)(eq. 22) N x N

DD D∗(eq. 39) N x N

SS S∗(eq. 40) N x N

UU U∗(eq. 41) N x N

FORZ F∗(eq. 42) N x N

G G(eq. 26) N x N

H H(eq. 25) N x N

A A(eq. 27) N x N

L L(eq. 30) N x N

GG G∗(eq. 38) N x N

B B(eq. 38) N x N

KK anj(eq. 45) N x N

eigenvalues v µi(eq. 28) 1 x N

Cn c(t)(eq. 28) N x nt(ntf)

h L−1c(eq. 28) N x nt(ntf)

Jp bp(t)(eq. 36) N x nt(ntf)

Jh bh(t)(eq. 36) N x nt(ntf)

oy p ω̂yp(y, t)(eq. 35) ny x nt(ntf)

oy h ω̂yh(y, t)(eq. 35) ny x nt(ntf)

oy=oy h+oy p ω̂y(y, t)(eq. 35) ny x nt(ntf)

L oy L∗(eq. 53) N x N

eigenvalues oy µ∗i (eq. 51) 1 x N

v v̂(y, t)(eq. 5) ny x nt(ntf)

u û(y, t) ny x nt(ntf)

w ŵ(y, t) ny x nt(ntf)

vortx ω̂x(y, t) ny x nt(ntf)

vortz ω̂z(y, t) ny x nt(ntf)

14

start

set parameters:

k wavenumber
Re Reynolds
phi waveangle
type base flow
ic initial condition
N num. modes
h y-grid (coarse)
hh y-grid (fine, for calculations)
y0 observation point for frequency
tmax max time for wave transient
nt coarse time-grid num. points
dtf spacing for time fine-grid (if used)
x (for wake) position
realbound (only wake) domain size

set base flow:
U, DU, D2U 1xny arrays

U_acc, DU_acc, D2U_acc 1xny_acc arrays

save new
database

compute new: call
compute_matrices.m

Load existing
database

or

Eigenfunctions and matrices:

eigenmodes

eigenmodes_acc

D1eigenmodes

D2eigenmodes

eigenmodes_squire
Nxny

D, S, F, U1,U2,

U3,DD,SS,UU,FORZ

NxN

Nxny_acc

compute initial condition:

1xny_acc
1xny

ic

ic_acc
here the user can
specify whatever ic

PROCESSING

compute A=H-1G

diagonalize A : get LAMBDA (μi), the Orr-Somm. eigenvalues
 L NXN,the Orr-Somm. eigenmodes

solve ODE for wall-normal velocity: Cn ny x nt (ntf)
 v, Dv,D2v ny x nt (ntf)

solve complete system: oy,D1oy nyxnt (ntf)

input: L, LAMBDA ,eigenmodes_squire,
D1eigenmodes_squire, h0

function solve_squire

compute matrices:
GG, BB

compute ODE particular solution coefficients:
 KK NxN

compute ODE particular solution:
 Jp NxN

compute IVP particular and homog. solution:
oy_p, oy_h nyxnt (ntf)

compute Squire eigenvalues and eigenfunctions
 L_oy, LAMBDA_oy NxN

compute Squire IVP complete solution
zero initial wall-normal vorticity

 oy, D1oy nyxnt (ntf)

POST-PROCESSING AND PLOTS

compute other velocity and vorticity components
u, D1u, w, D1w, vortx,vortz

mod_v, mod_u,mod_w,mod_vortx, mod_vortz, mod_oy ny x nt (ntf)

compute unwrapped phases at location y0
phase_u, phase_v, phase_w 1 x nt (ntf)

compute frequency evolution at location y0
phase_u, phase_v, phase_w 1 x nt (ntf)

compute integral kinetic energy, growth factor, and enstrophy
G, r, Z 1 x nt (ntf) NB: the solution is on ny points so integrals are computed on ny, not nyf

PLOTS

Simple time-grid (nt)

t1 t2 t3

Time-grid for frequency (ntf)

t1 t2 t3

 use this grid if not interested in wave frequency transient. (where
accurate time-derivatives are required).
- comment lines 60-83 and lines 342-350
- uncomment lines 328-337 to compute the wave freq. with this grid

The user can use this grid if he wants to compute wave frequency
transient. In this way, the user can specify an arbitrary nt, for
the solution, leaving unaffected the accuracy of the time derivatives.
- comment lines 328-337
- uncomment lines 60-83 and lines 342-350

t=t_coarse

t, t_coarse

nt=3

nt=3

ntf=15

end

load file:
eigenvalues.mat

gtot

15

References

[1] S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Oxford Uni-
versity Press, 1961.

[2] C. L. Dolph and D. C. Lewis. On the application of infinite systems of ordinary
differential equations to perturbations of plane poiseuille flow. Quart. Appl.
Math, 16:97–110, 1958.

[3] A. Gallagher and McD. Mercer. On the behaviour of small disturbances in
plane couette flow. J. Fluid Mech., 13:91–100, 1962.

[4] S. A. Orszag. Accurate solution of the orr-sommerfeld stability equation. J.
Fluid Mech., 50:689–703, 1971.

[5] D. G. Zill and M. R. Cullen. Differential Equations with Boundary Value
Problems. Brooks/Cole, 2005.

16

