
DNS TurISMi 1.7

Copyleft (CL) 2016 Michele Iovieno, Luca Gallana. This program is free software;
you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchanbility or fitness for
a particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA.

This program is based upon DNS TurISMi 1.4 of Michele Iovieno. See
http://areeweb.polito.it/ricerca/philofluid/ for information and documentation.

1 Requirements

Fortran 2008 compiler (GNU, Intel, IBM, ...) with Fortran 2008 standard support (see
https://gcc.gnu.org for documentation of an open-source fortran compiler)

MPI 3.0 library or any other which support the MPI 3.0 standard, like OpenMPI 1.7.3, MPICH
3.0.4, ... (see http://www.mpi-forum.org for documentation)

FFTW 3.3.4 or higher (see http://www.fftw.org/ for installation and documentation)

2 Installation

A sample Makefile is included in the release. Installation can be performed via make install

command. make clean is used to delete intermediate compilation files and make veryclean to
uninstall the package. Installation can be customized as follows:

FC executable of the mpi Fortran compiler

FCF custom flags for the fortran compiler (like -g, -O3, etc.)

FFT fftw flags for the fortran compiler (already set-up)

IPATH path or system variable for of the fftw include files

LPATH path or system variable for the fftw library files

The following executable are available:

dns main code exec which evaluates the time integration of a periodic, parallelepipedic flowfied via
Direct Numerical Simulation of NS equations (RK4 in time, Fourie-Galerkin Pseudo-spectral
in space)

prog trasf dir fftw transforms a parallelepipedic dataset from the physical space to its pseudo-
fourier 3-D transform

prog trasf inv fftw transforms a parallelepipedic dataset from a pseudo-fourier 3-D transform
to physical space

1

http://areeweb.polito.it/ricerca/philofluid/
 https://gcc.gnu.org
http://www.mpi-forum.org
http://www.fftw.org/

3 Usage

Trasformation Programs

./prog_trasf_dir_fftw [alias] [file(s)]

./prog_trasf_inv_fftw [alias] [file(s)]

Perform the direct/inverse transform of the [file(s)] indicated in the arguments. If the argument
[alias] is T, then a domain contraction/reduction is performed – following the 2/3 law. In other
cases, the dimensions of the output are the same of the input.

DNS Program

./dns

No argument are needed.
The main program is responsible to load the data (depending on the old_step value of the param-
eter file. If old_step = 0 velocity data are taken from the files indicated in the parameter file, and
the scalar fields are computed in the initialize_scalars method. The integration is iterated
then basing on the parameters indication for total number of steps and store frequency. Those
configuration can be set in configuration file param.dat, for which an example is here represented
in the following.

Section Grid for grid dimension
N = N1, N2, N3 – grid with dimension N1 ×N2 ×N3
N = 2*N , N3 – grid with dimension N2 ×N3

N = 3*N – grid with dimension N3

Section Params for physical parameters
Re = xxx – Reynolds number
Sc = x1, x2, ... – Schmidt(s) numbers
DT = xxx – Integration time step
NSCAL = xxx – Number of Passive Scalars

Section Simul for simulation parameters
TOTAL_STEPS – Total number of steps
SAVE_FREQ – Step save frequency
OLD_STEP – Initial count for output files

Section Names for input file names
FNAME =xxx1,xxx2,xx3 – name of the files which contains the initial conditions for velocity
field (used only if OLD_STEP = 0)

Example of param.dat. �
&GRID
N = 2∗128 , 512
/
&PARAM
RE = 330.0000 ,
SC = 1.000000 , 5∗0.0000000E+00 ,
DT = 4E−03,
NSCAL = 1
/
&SIMUL
TOTAL STEPS = 2000 ,
SAVE FREQ = 40 ,
OLD STEP = 0
/
&NAMES
FNAME = ” f r u 1 . bin ” , ” f r u 2 . bin ” , ” f r u 3 . bin ”
/

2

4 Domain Dimensions

N1, N2 and N3 are the dimensions in wave-number space. All these values must be even.
M1, M2 and M3 are the dimensions in phisical space. For the 2/3 anti-aliasing rule, Mi/3 =

Ni/2
In wavenumber space, data are ordered like follows:
A(0) A(N+1) A(1) B(1) A(2) B(2) A(3) B(3) A(N-1) B(N-1) A(N) B(N)
where A(x) is the real part relative at the wavenumber x, and B(x) is the immaginary one. The

advantage of this kind of ordering is that to derive a variable, the exchange of real and immaginary
part can be done between contiguous vales.

n process Total number of MPI instances

n process s Number of process along the first distributed direction (both for slab and stencil
parallelization)

n process p Number of process along the second distributed direction (only for stencil paral-
lelization)

Slab In that case n_process_s = n_process and n_process_p = 1. There is only one dis-
tributed direction at time. The requirement of such kind of distribution is that n_process

is a divisor of Ni/2 for all directions.

Stencil In that case n_process = n_process_s*n_process_p There are two distributed direc-
tion at time. The requirement of such kind of distribution is that both n_process_s and
n_process_p are a divisor of Ni/2 for all directions.

Why divisor of Ni/2 instead Ni It is due to the first derivative algorithm, which envisages that a
sigle process know at the same time both real than immaginary part of a given wavenumber (also
for distributed direction). In that way, derivative can be always computed locally inside a single
process, without envolving MPI communications.

5 Modules and Methods

5.1 Module MPI Utils

Module for domain distribution management and inizialization of MPI variables. A smart domain
recognization allow to run-time use a slab parallelization (1D) or a stencil parallelization (2D)
depending on the domain dimension and on the total number of MPI threads. It makes available
the so called local dimension, and initialize the comunicators among the MPI threads.

Method and arguments Description Notes

mpi initialization() initialize MPI
Must be called once during

initialization

make slab()
produce local dimension and

comunicators for slab
parallelization

make base stencil()
produce local dimension and

comunicators for stencil
parallelization

print grid() print the computed grid

5.2 Module MPI Communications

Module which performs matricial transposition in a distributed domain. It use mpi global com-
munication routines - in particular MPI AllToAll.

3

Method name Description Notes

Trasp13s(A,B,Nl1,Nl2,Nl3)
Transposition between the
first and the third index,

single precision

Input: A(Nl1, Nl2, Nl3)
Output: B(Nl3, Nl2, Nl1)

Trasp13d(A,B,Nl1,Nl2,Nl3)
Transposition between the
first and the third index,

double precision

Input: A(Nl1, Nl2, Nl3)
Output: B(Nl3, Nl2, Nl1)

Trasp12s(A,B,Nl1,Nl2,Nl3)
Transposition between the
first and the second index,

single precision

Input: A(Nl1, Nl2, Nl3)
Output: B(Nl2, Nl1, Nl3)

Trasp12d(A,B,Nl1,Nl2,Nl3)
Transposition between the
first and the second index,

double precision

Input: A(Nl1, Nl2, Nl3)
Output: B(Nl2, Nl1, Nl3)

5.3 Module MPI InOut

Module which manage binary input/output operation with parallelized streams of data. Interfaces
allows to use the same modules both in single than in double precision.

Method name Description Notes

save 3d single(A,fname)
Store the variable A (single
precision) into the file fname

save 3d double(A,fname)
Store the variable A (single
precision) into the file fname

save 3d(A,fname)
Store the variable A into the

file fname
Interface

read 3d single(A, fname)
Read the variable A (single

precision) from the file fname

read 3d double(A, fname)
Read the variable A (single

precision) from the file fname

read 3d (A, fname)
Read the variable A from the

file fname
Interface

5.4 Module Derivative

Module for basic differential operation management. All the operations are local (no MPI com-
munication is required.)

Method name Description Notes

Make Wavenumbers()
Initialize the first and second
order wave-numbers in each

direction

Must called once after mpi
inizialization

Derive1(A,B)

Compute the first derivative
along the first index of the
input A. Results are stored

in B

Input: A
Output: B

Derive2(A,B)

Compute the first derivative
along the second index of the
input A. Results are stored

in B

Input: A
Output: B

Derive3(A,B)
Compute the first derivative

along the third index
Input: A

Output: B

4

5.5 Module FFTW Utils

Module which manage the Fourier transform via FFTW. FFTW works computing the best execu-
tion schemas (called plans) during the initialization, based upon the domain dimensions. The plans
are used run-time for quickly evaluate the direct/inverse transform of data with coherent dimension.

Method name Description Notes

Make Fftplans()

Manage the plans needed to
perform the transform
according to domain

dimension

Must be called once after
initialization

Plan dir(N, plan)
Evaluate the plan for a

direct transform of a data
with dimension N

Private usage

Plan inv(N, plan)
Evaluate the plan for am

inverse transform of a data
with dimension N

Private usage

fft 1d single dir
(var,Nl1,Nl2,Nl3,plan)

Execute a direct transform
along the first index

input/output: var
Nl1, Nl2, Nl3 – dimension of

the domain (explicit
definiton is needed)

plan – the plan for the
transform of segment with

dimension equal to Nl1

fft 1d single inv
(var,Nl1,Nl2,Nl3,plan)

Execute an inverse transform
along the first index

input/output: var
Nl1, Nl2, Nl3 – dimension of

the domain (explicit
definiton is needed)

plan – the plan for the
transform of segment with

dimension equal to Nl1

fft 3d single dir aa(A,B)
Exec a 3D direct transform
of A into B, with domain

contraction for Anti-aliasing

During the operation data
are transposed

fft 3d single inv aa(A,B)
Exec a 3D inverse transform

of A into B, with domain
expansion for Anti-aliasing

During the operation data
are transposed

fft 3d single dir na(A,B)
Exec a 3D direct transform
of A into B, without domain

contraction

During the operation data
are transposed

fft 3d single inv na(A,B)
Exec a 3D direct transform
of A into B, without domain

expansion

During the operation data
are transposed

5.6 Module Physica

Module which computes the physical terms of the equations. The routine method ns operator can
be customized in order to include other physical effects can be added. Note that, generally, the
convective terms must be the first one computed, and the poissonian must be the last one.

∂U

∂t
= A momentum eq.

∂S

∂t
= B scalar eq.

5

Method name Description Notes

ns operator(U,A,S,B)
Container for

non-time-derivative equation
terms

convective terms(U,A,S,B)
Computes the convective

terms

Ai = ∂(Ui · Uj)/∂xj

Bi = Uj∂Si/∂xj

diffusive terms(U,A,S,B)
Compute (pseudo) diffusion

of U and S and add the
result to A and B

Ai = Ai − ∂2Ui/∂x
2
i /Re

Bi = Bi − ∂2Si/∂x
2
i /Re/Sci

poiss solver(A)

Resolve the Poissonian
equation in order to take

into account pressure forces
in the momentum equations

A = A +∇(∇−2(∇ ·A)))

5.7 Module Time Integrator

Time integration with low storage Runge-Kutta4 algorithm.

Method name Description Notes

rk4(u0,s0)
Time integration with low

storage Runge-Kutta4
algorithm

skel(var)
Used to evaluate running time basic statistics

(mean, variance, thrd and fourth moment) along
the third direction

6

Appendix A Stencil vs Slab parallelization

The basic principle of these two kind of parallelization is almost the same. A 3-dimensional
domain – with regular, rectangular structured pointgrid – can be shared among a moltidute of
process subdividing the grid-points along one direction (slab) or two directions (stencil).

In spectral methods, all the basic operations (sum and differentiation) are local – considering
complex variables. In that way no communication between process is needed for those process.

For non-local spectral operations (AKA multiplication), the resolution cannot be performed by
a process only with its own data. In particular, the widely-used approach is to anti-transform the
data and perform the multiplication in physical space, and then go back to spectral space.

To perform a transformation along one direction, such direction must be not distributed: this
means that, for a 3-dimensional operation, it is necessary proceed in a direction-by-direction trans-
formation, redistributing the data between each step so that the parallelization does not affect the
direction to be processed.

Considering that the domain is distributed among N process, for slab parallelization the topol-
ogy is 1 × 1 × Ns – which means that the first two direction are not distributed, and the third
direction is distributed among N processes. The total number of processes involved is equal to
N = Ns

Instead, for slab parallelization, the topology is 1 × Np × Ns – which means that the first
direction is not distributed, the send direction is distributed among Np processes, and the third
one is distributed among Ns processes. The total number of processes involved is equal to N =
Np ·Ns Considering that, Slab and Stencil parallelizations, even if they follow the same conceptual
architecture, differs for two aspects:

1. Different step-by-step procedure

2. Different process communicators

Step-by-step Transform procedure

In the following we show step-by-step how 3D transformation is performed. In each step the
direction situation/position are resumed using the following conventions:

x, y and z indicate the real directions in physical space

x̂ indicates the transform along direction x

xd indicates that x is distributed

the ordering match with the computational order – so (z, y, x) means that z is on first computa-
tional direction, y on second, x on third

7

Slab

• Initial situation → (z, y, xd)

• Transformation along z → (ẑ, y, xd)

• Transformation along y → (ẑ, ŷ, xd)

• Transposition T13 between x and z → (x, ŷ, ẑd)

• Transformation along x → (x̂, ŷ, ẑd)

Stencil

• Initial situation → (z, xd, yd)

• Transformation along z → (ẑ, xd, yd)

• Transposition T13 between z and y → : (y, xd, ẑd)

• Transformation along y → (ŷ, xd, ẑd)

• Transposition T12 between y and x → (x, ŷd, ẑd)

• Transformation along x → (x̂, ŷd, ẑd)

Process communicators

A communicator is a property of each process, indicating which other processors are involved in a
data exchange during a certainly message passing interface method.

The situation is almost trivial in Slab parallelization, since during T13 transposition a process
exchange data with all the other ones. In that case there is only one slab communicator – and
obviously there is none stencil communicator. In particular, in that case the only communicator
present corresponds to the global one.

In Stencil parallelization the situation is more complex: there are several slab and stencil
communicators, depending on of domain decomposition topology. In particular, there will be
Np slab communicator, and Ns stencil communicators. During T13 transpositions, a process
exchange data only with other processes having the same slab communicator. Similarly, during
T12 transpositions, a process exchange data only with other processes having the same stencil
communicator.

8

S
la

b
 C

o
m

m
.

Stencil Comm.

S
la

b
 C

o
m

m
.

Figure 1: Up – Slab parallelization: there is only one slab communicator, which is the same for
all process; it corresponds to the global communicator.
Down – Stencil parallelization: there are both slab and stencil communicators. A processes which
belongs to a certainly slab communicator exchange data only with other processes having the same
communicator during T13 transposition. Similarly, a processes which belongs to a certainly stencil
communicator can exchange data only with other processes having the same communicator during
T12 transposition.

9

	Requirements
	Installation
	Usage
	Domain Dimensions
	Modules and Methods
	Module MPI Utils
	Module MPI Communications
	Module MPI InOut
	Module Derivative
	Module FFTW Utils
	Module Physica
	Module Time Integrator

