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1. Introduction 

Recirculation zones can be found in many natural and engineering contexts. In both 

turbulent and laminar flows, separation, caused by a sudden change in geometry or a strong 

adverse pressure gradient, induces vortex formation, which can be either steady or unsteady. 

The energy balance changes dramatically in these configurations when compared to flows 

which are predominantly uni-directional, such as a plane channel flow or boundary layer, 

affecting the flow dynamics and inducing greater mixing and transport phenomena. The study 

of this increased flow complexity is important in order to be able to understand better the 

interactions between, and the dispersion of the flow properties. This knowledge is key to 

developing and improving models designed for problems which include recirculatory 

phenomena. 

Observing the kinetic energy transport statistics of wall bounded flows it can be seen that 

the dominant terms are the production and viscous dissipation, followed by its viscous 

diffusion and the turbulent transport. This differs in recirculation zones, where Le, Moin and 

Kim (1997) (LMK) and Yoshizawa (1982, 2002) have highlighted the redistribution of the 

energy for turbulent flows, such as those downstream of backsteps. Although still dominated 

by kinetic energy production and viscous dissipation, there is a rearrangement of the relative 

importance between the other terms, specifically the pressure transport represents a greater 

proportion of the kinetic energy transport. This was brought to attention in the paper of 

Yoshizawa (2002) on analysing the Direct Numerical Simulation backstep flow of LMK, 

bluff body (Obi and Nakatani, 2001) and trailing edge flows (Yao, Thomas, Sandham and 

Williams, 2001). 

The study of LMK considered the boundary layer over a backstep, thus a flow which is 

initially uni-directional before separating at a discontinuity in the flow geometry. Interestingly 

when analysing the recirculating region downstream of the backstep they note similarities 

between the energy distribution found in the plane mixing layer, ie. a highly recirculatory 

flow. 

In this work, the sheared cavity flow in both laminar and turbulent regimes, a fundamental 

wall bounded recirculating flow configuration, in addition to the non-bounded shearless 

turbulent mixing, are considered. Initially a comparative analysis of velocity and pressure 

fields for varying Reynolds number in the case of the cavity flows, and for varying energy 

ratio in the case of the turbulence mixing is presented. The energy budget is then observed in 

the mixing plane in these configurations, namely along the cavity mouth and in a plane at the 
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centre of the turbulent mixing layer, in order to further parameterize this re-distribution of 

energy. For the case of the cavity flows, where a mean flow is present, the mean as well as the 

fluctuating transports will be analysed in the cavity shear layer. It is not thought that a study 

based on the mean flow variables has previously been carried out, with Bailey, Abbà and 

Tordella (2008) the first to propose such a study. 

In chapter 2 the physical problem is presented, where in section 2.1 the flow physics 

governing transport phenomena is discussed. Section 2.2 introduces the pressure-kinetic 

energy balance. The energy balance equation is derived from the kinetic energy transport 

equation, and previous findings from literature regarding the roles played by the pressure and 

kinetic transport in zones of recirculation are presented. 

In chapter 3 the flow states considered in this study are introduced, with in section 3.1 the 

cavity flow, discussing first relevant studies already in literature in sub-section 3.1.1 and then 

the two numerical tools, their development and verification, used in this study. Two DNS 

codes have been employed to carryout the channel-cavity simulations, both finite difference 

implementations of the incompressible Navier Stokes equations. Further details of their 

development and implementation can be found in sub-sections 3.1.2-3.1.5. In sub-section 

3.1.6 the characteristics of the flow are presented, culminating in profiles of the pressure, 

velocity and kinetic energy at the mouth of the cavity. In the final part of this chapter, sub-

section 3.1.7, the turbulent cavity flow configuration is considered, together with the 

particulars relating to its more complex setup. 

The following section 3.2 then moves on to the shearless mixing. In this section the 

shearless turbulent mixing of two decaying homogeneous isotropic turbulent (HIT) fields is 

presented, for mixings differing only due to their energy content. The development of 

turbulent intermittence from an initial Gaussian state, and the energy/pressure transport from 

initial zero values is presented through analysis of the velocity statistics. Since the flow is 

devoid of the production of turbulence kinetic energy, the study allows the study of the finer 

mechanisms involved in the energy balance. In sub-sections 3.2.1-2 the background and 

theory is presented, in 3.2.3 methodology and in the final part 3.2.4 the results of the 

simulations. 

In chapter 4 the energy balance analysis is then carried out for all the flow configurations 

considered. Starting with the mean energy balance in the laminar and turbulent cavity flows in 

section 4.1. The fluctuating energy balance in for the cavity flows is then considered in 

section 4.2, and in the final section 4.3 for the shearless turbulent mixing. 
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In the final chapter concluding remarks and further developments and applications are 

given. 
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2. The Physical Problem 

In chapter 2 the physical problem is presented. The phenomena of transport in fluids is 

discussed and several important aspects are considered: the Reynolds number of the flow, and 

transport at the molecular level. The chapter is split into two sections where section 2.1 the 

flow physics governing transport phenomena is discussed. In section 2.2 the pressure-kinetic 

energy balance equation is derived and previous findings regarding the importance of the 

terms in zones of recirculation is presented. 

2.1. Transport  

2.1.1 Introduction 

Transport within a medium is a result of a non uniform distribution of the properties of the 

medium. Fluids tend to an equilibrium state where a balance is reached between the inertial 

and the molecular transport properties. In an inhomogeneous configuration, molecular level 

agitation causes the transport of species, momentum and internal energy (Batchelor, 1990) 

from regions of high concentration to those of lower concentration. Heat is conducted and 

momentum is exchanged through the action of viscosity. 

In the continuous Navier Stokes equation (2.1), accompanied by the continuity equation 

(2.2), these transports are represented by the diffusion of momentum, factored by a molecular 

diffusion coefficient, and by the convection of momentum in the non-linear inertial term. 
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2.1.2 Significance of Reynolds Number 

The ratio of inertia to viscous forces, the Reynolds number (2.3), , is a measure of the 

relative importance of the convection and diffusion terms in the Navier Stokes equation. For 

high Reynolds number flows, diffusion almost becomes insignificant, only remaining 

important in thin layers close to boundaries, or where large gradients of the flow properties of 

state can be found such as in shock waves, and at the dissipation scale of turbulence in the 

vortical filaments. Apart from these instances, the transport by the inertia of the flow, the 
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convection, is much greater than the effects of molecular transport, and the Navier Stokes 

becomes a balance of the pressure and convection terms.  

 

µ

ρud
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In low Reynolds number flows the flow properties are more diffused owing to the greater 

molecular transport, in a Stokes flow the non-linear inertial term is insignificant and an be 

omitted from the momentum equation (2.4). 
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For flows in which viscous effects are unimportant, ie. flows at high Reynolds number, or 

the flow at a large distance from a boundary, the inertia term dominates and the Euler 

equation (2.5) can be used.  
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2.1.3 Implications of Molecular Level Transport  (Shear) 

When adjacent elements of a fluid moving at differing velocities mix, friction forces are set 

up as a result of the molecular level transport interactions.  Groups of molecules from each of 

the elements diffuse into the neighbouring element and molecular attraction/repulsion forces 

act to dissipate energy, tending to smooth spatial variations of the velocity. For Newtonian 

fluids Stokes’ hypothesis holds, in that viscous stresses are linearly related to the rate of strain 

of a fluid element. 

Over the area of interaction surface between the two elements, this shear acts to dissipate 

kinetic energy, turning it to heat energy.  Regions of shear may give rise to instability, here 

energy is taken from the mean velocity field, with turbulent kinetic energy produced. At high 

Reynolds numbers shear layers are a source of many vortical scales, turbulent kinetic energy 

and vorticity. 

The flow close to a boundary is forced, by the condition of no-slip, to approach the 

velocity of its boundary, where there is no relative movement between the molecules of the 
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boundary and the molecules of the fluid. If the velocity of the boundary is different from that 

of the flow far from the boundaries, and often one of the media is stationary (eg. flow moving 

past a sphere, or a sphere moving through a fluid), then this sets up a volume where these 

molecular interactions dominate in the vicinity of the boundary. In this boundary layer the 

shearing effect is associated with flow momentum loss and a skin friction drag. 

Separation of this boundary layer can occur when an adverse pressure gradient is present, 

in this situation the flow particles are losing kinetic energy. The particles closest to the 

boundary have the least kinetic energy, and it is possible that the fluid has zero velocity offset 

from the boundary.  Downstream of separation point, in both laminar and turbulent flows, 

there exists a recirculation zone in which the flow closest to the boundary moves in the 

opposite sense to the freestream. This flow tends to be unsteady. An adverse pressure gradient 

can be caused by a diverging geometry, such as an expanding channel or the convex surface 

of an aerofoil, or a sudden expansion, such as downstream of a backstep or bluff body. 

As shall be shown in the following chapters these regions of non-uniformity and shear 

bring about differing importance in the role played between terms in the energy balance of the 

flow. 

2.2. Energy Balance 

In the next section, working from the equations for energy as presented in Batchelor 

(1990), (eqn.s 3.3.1, 3.4.3, 3.5.1), the energy balance equation will be derived, focussing on 

the relations between the transport of kinetic energy, and on the transport of energy in the 

form of pressure.   

2.2.1 Derivation of Energy Balance Equation 

For a fluid moving with velocity u
r

, the rate of change of kinetic energy per unit mass is 

expressed  
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  is the kinetic energy of the bulk flow 

   e  the internal energy 
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  iF  a body force in direction i 

  ρ  fluid density 

  ijσ  stress tensor 

  k thermal conductivity 

  T temperature 
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Introducing a coefficient α into the energy balance equation we can represent the pressure 

transport, pv , as some factor of the kinetic energy transport 
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2.2.2 Energy Balance in Recirculatory Turbulent Configurations 

In turbulent flows it is well known that the production and dissipation of turbulent kinetic 

energy reach peaks close to boundaries. The pressure and turbulent kinetic energy transport 

also increase close to walls. In general it scales with the convective transport, Yoshizawa 

(2002). Yoshizawa goes on to note that the combined sum of the pressure and kinetic energy 

transports are everywhere else in the channel, much less than the production and dissipation 

terms, albeit except for the centreline region where production and dissipation are relatively 

low. 

The relative magnitude of the various terms can be seen in the profiles of the turbulent 

kinetic energy budget taken from LMK in figure 2.1. At 2 step heights upstream of a turbulent 

backstep flow the pressure and turbulent kinetic energy transport terms are relatively low 

compared to the production and viscous dissipation terms, except in the near wall region. At 4 

step heights downstream of the backstep, thus in the recirculating region, the maximum value 

of the pressure transport doubles with respect to its upstream value, whereas the maximum 

turbulent kinetic energy transport almost halves. Note also a sign reversal for the coefficient 

α. Upstream of the backstep Pk and Tk are of the same sign near the wall, thus α is negative 

and the transports are in the same direction. Moving away from the wall Tk reverses sign, 

thus also α. In the recirculating region Pk and Tk are of opposite sign, thus α is negative. 

Flows in which large convective transports can be found include those in which there are 

large changes in the streamwise direction, so in addition to backsteps one can include bluff 

bodies (Yao, Thomas, Sandham, Williams 2001) and cavity flows. It is in these flow 

configurations in which these two terms, the pressure and kinetic energy transports, become 

influential in the energy balance, and indeed the relative magnitudes of the two terms, and not 

just the sum, is now also of interest. Yoshizawa notes that pressure transport is generally 

considered to be 10% the value of the kinetic energy transport. As discussed above, when 

entering regions of high recirculation there is a redistribution of energy between these two 

terms, with the pressure transport taking on a greater role. 
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Figure 2.1. Kinetic energy budget in the backstep flow, taken from DNS simulation of Le, Moin and Kim 

(1997) (LMK). Top figure is at 2 step heights upstream of backstep, bottom figure is within recirculation zone 

4 step heights downstream of backstep. a) Away from the wall, b) near the wall. 



14 

 

2.2.3 Mean and Fluctuating Components: Transports / Correlations 

A number of differing terminologies are used in literature to refer to the various transport 

terms. For clarity in the second column of table 2.1 the relevant versions that will be referred 

to in this text are listed. Here the velocity/pressure can be mean or fluctuating values, 

depending on the context. Particularly, Yoshizawa (2002) often refers to the term ρujuiui as a 

triple velocity correlation, and later in his paper drops the ‘triple’ to name this same term the 

‘velocity correlation’. Here this triple moment is given its full and non ambiguous title, the 

kinetic energy transport. 

In turbulent flows the transport terms based on the fluctuating components are synonymous 

with correlations, usually the mean component is not considered in this context. 

 

 

 

Terms used in this work 

 

 

Frequently synonyms 

found  in literature 

 

Type of transport 

ρui Mass transport 
 

 
Scalar 

ρui uj Momentum transport 
(co)Variance / Velocity 

correlation 
Vector 

ρujui ui Kinetic energy transport 
Triple velocity 

correlation 
Scalar 

Pui Pressure transport 
Pressure-velocity 

correlation 
Scalar 

 

Table 2.1. Definitions of transport terms. 
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3. Flow States and Methodologies 

In this chapter the two flow configurations considered in this study, the laminar and 

turbulent cavity flow and the homogeneous isotropic shearless turbulent mixing, are 

presented. The basic flow states are shown without at the stage determining the energy 

balance. 

The first section 3.1 considers laminar and turbulent cavity flows in a channel. The 

velocity and pressure fields in the cavity, along the channel and at the mouth of the cavity are 

presented for flows over a range Reynolds numbers. In the first sub-section 3.1.1 the relevant 

studies already in literature are discussed, then in sections 3.1.2-5 the development and 

verification of the two numerical methods used in this study is presented. In the final two sub-

sections the results of the cavity flow simulations are presented and compared with those 

found in literature, with in 3.1.6 the laminar results and in 3.1.7 the turbulent case. Further 

discussion of the methodology and proof of verification can be found in the turbulent sub-

section owing to the added complexity of the method.  

The following section 3.2 then moves on to the shearless turbulent mixing of two decaying 

homogeneous isotropic turbulent (HIT) fields, for mixings differing only due to their energy 

content. The development of turbulent intermittence from an initial Gaussian state, and the 

energy/pressure transport from initial zero values is presented through analysis of the velocity 

statistics. Since the flow is devoid of the production of turbulence kinetic energy, the study 

allows the study of the finer mechanisms involved in the energy balance. Sections 3.2.1 and 

3.2.2 introduce the topic and the background, the numerical methodology employed is 

presented in section 3.2.3, and the results are presented in section 3.2.4. 

3.1. Cavity Flows 

3.1.1 Laminar, Transitional, Turbulent: Bibliography 

 The cavity problem presents two main phenomena: flow separation and vortex formation. 

Focusing only on rectangular geometries, the nature of this separated recirculating flow 

depends upon the Reynolds number, the upstream flow regime, as well as the cavity aspect 

ratio. 

In internal flow applications, such as channels or turbines, the flow is almost always 

turbulent. Discontinuities or expansions in geometry cause the flow to lose kinetic energy and 
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make it susceptible to reverse in direction in the vicinity of boundaries, this gives rise to 

recirculation zones, greater shear and thus greater instability. In these flow situations a greater 

energy is required to overcome drag and maintain the required flow rate. One key example is 

the highly tuned flow within a turbine. Since turbines are responsible for providing are large 

proportion of global energy consumption, a small improvement in the flow efficiency can 

have great effects both fiscally and environmentally. 

Despite the fact that most flows in both engineering and in nature are turbulent, the laminar 

cavity flow is still of significant importance. Indeed Krishnamurty (1956) found that laminar 

upstream boundary layers gave rise to higher sound pressure levels (SPL) than the 

corresponding turbulent flow, and Howe (1997) showed not only that laminar mean flows can 

induce oscillations, but that laminar flow resonances are often more intense. A laminar flow 

regime is not only an interesting point, but also and important point from which to consider a 

wide range of Reynolds numbers for a complete study of the dynamics of a flow 

configuration. 

The engineering interest in the area of cavity flows is primarily motivated by the 

requirement to reduce the noise impact of commercial aircraft.  A large fraction of this noise 

is derived from the jet engines, however due to major advances in this field over the past 

decade, fuselage induced noise is now an equally contributing factor, Morris (2007).  

Relevant geometrical features of the fuselage include window gaskets, discontinuities over 

wings and flaps, fuel vents, and wheel wells, Camussi, Guj and Ragni (2006).  Air frame 

noise mainly generated by the flow control devices and the lowered undercarriage reaches a 

peak on final approach to landing, this phase of flight is coincident with the closest vicinity to 

large urban areas.  Also of concern is the vibrational loading induced by the oscillating flow, a 

potential source of fatigue, component damage and passenger discomfort, as well as an 

increased skin friction and form drag, which reduce the aerodynamic performance and create 

a greater environmental impact. 

Further settings in which cavity flows are of significant importance are in the cooling 

towers of computers, the aerodynamics of road vehicles and trains, as well as sound/pressure 

wave absorption devices where a ridges present an increased surface area compared to a flat 

profile. More recently, with the development of commercial aircraft with greater payloads and  

range, cavities are used as a means of flow control on the upper side of low aspect ratio 

wings, increasing boundary layer vorticity to suppress separation. 

In both laminar and turbulent cavity flows, after separation at the upstream edge, the mean 

flow forms a vortex of the dimension of the cavity depth. Reattachment to the floor of the 
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cavity depends on its aspect ratio. For a laminar cavity reattachment is dependent on Re and is 

typically of the order 10 cavity depths downstream of the upstream edge.  For a turbulent 

cavity this is less dependent on the Re and is widely accepted to be around 6 cavity depths 

downstream of upstream edge, Sinha, Gupta and Oberai (1982). The region between this 

reattachment point and the upstream edge is dominated by a large recirculation. For flows 

with cavity aspect ratios less than these values, except for Stokes flows at low Re, the cavity 

is likely to be ‘open’, in which after separating from the leading edge reattachment takes place 

downstream of the trailing edge. The whole cavity is then dominated by a recirculation region 

with, for higher Re, the principal eddy located close to the downstream edge. For cavity flows 

where reattachment takes place on the cavity floor, the cavity is termed ‘closed’. Here, 

beyond the upstream recirculation zone there exists a region of uni-directional flow parallel to 

the cavity floor until the flow re-separates close to the downstream edge, and a second 

recirculation region is here present. 

A rectangular cavity having aspect ratio greater than 1 is termed shallow, otherwise deep 

after Sarohia (1977). 

Although the rectangular cavity represents a basic geometrical form, it has been studied in 

various simpler forms, allowing the researcher to concentrate on the vortex formation, 

transitions and instabilities. The lid driven cavity, that is an enclosure in which one or more of 

the boundaries drives the flow, has been studied analytically, numerically and experimentally. 

The review of Shankar and Deshpande (2000) summarizes this history. In this context the 

flow is driven by the movement of one or more of the bounding walls and not through the 

shear of a flow external to the cavity. A square cavity is by far the most frequently studied 

geometry. Theofilis, Duck and Owen (2003), is an example of such work, studying the 

instability of flow in four enclosed flow configurations, working from a plane channel, to the 

2D version of the laminar Poiseuille pipe flow, through to the 2D counterpart to Couette 

flows, before considering the lid-driven cavity. 

The structure of turbulent boundary layer over rectangular roughness, ie. 2D cavities, has 

been studied in water tunnel experiments (Djenidi, Elavarasan & Antonia 1999) and also in 

the DNS of a turbulent channel cavity flow at Re_tau=180 by members of the same group 

(Leonardi, Orlandi, Smalley, Djenidi & Antonia 2003, Leonardi, Orlandi, Djenidi & Antonia 

2004). In the numerical studies recirculation and reattachment has been considered for various 

cavity aspect ratios for 0.33 < D < 39, analyzing the drag, Reynolds stress distributions and 

velocity profiles, as well as the roughness/cavity interaction with the structure of the turbulent 

boundary layer. For aspect ratios lower than 7 the flow, after separating at the upstream edge, 



18 

 

reattaches downstream of the opposite edge, for greater aspect ratios the cavity is closed. The 

numerical domain is however periodic in the streamwise direction, thus given that the 

configuration is an infinitely long rough wall  channel all the cavities have disturbed upstream 

turbulent boundary layers. 

Oscillations in cavity flows can be caused by a number of interacting acoustic and fluid 

dynamics phenomena. A recent overview of the studies into understanding these phenomena 

and developments towards controlling oscillating cavity flows is given by Rowley and 

Williams (Ann. Rev. 2000). An important point made by these authors is that the aim of 

controlling this flow is not particularly to avoid the oscillations, but to reduce the amplitude of 

the tones. 

When considering numerical approaches to the study of the aero-acoustics of cavity flows 

it is very rare to find studies of both the fluid dynamics of the cavity (the acoustic source 

region) and the far field noise propagation, without the use of a model for one of the two 

regions. The fine resolution required in the cavity and the long domain needed to model 

pressure wave propagation make this an expensive task, De Roeck, Desmet, Baelmans and 

Sas (2004), and hybrid methods are commonly preferred, Terracol, Manoha, Herrero, 

Labourasse, Redonnet, Sagaut (2005). 

In this study the boundary layer thickness over cavity depth ratio is low, thus the acoustic 

feedback mechanisms, see Rowley and Williams (2006) are secondary. This work will 

therefore concentrate on the fluid dynamics dominated cavity flow more than acoustic effects. 

The Reynolds number is defined by the parameters driving the flow, thus the channel bulk 

velocity and the channel half height. This relation will be denoted Re from now on. 

3.1.2 Methodology: DNS Code, Fractional Step Method 

The incompressible non-dimensional Navier Stokes equations in conservative form (3.1) 

are solved using a fractional step method, of the type Moin & Kim (1985). The scheme is 

second order finite difference, with velocities and pressure collocated in a staggered 

arrangement, see scheme in figure 3.1. 
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In the fractional step method the momentum equations are solved first without the presence 

of pressure, see the sequence in equations (3.2-8). Pressure is subsequently included in the 
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equations on enforcing a divergence free velocity field, where its solution is reduced to the 

solution of the Poisson equation. The scheme employs fourth order Runge Kutta time 

integration, in which pressure is calculated on each sub step. 
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The convection and diffusion terms are solved in 3D by second order finite differencing, 

whereas the laplacian for pressure is discretised in independent 2D x-y planes. A direct 

method, employing a matrix inversion technique, UmfPack, Davis and Duff (1997), is used to 

give a solution to the relation Ax=b, where A is an n-by-n sparse linear matrix, and x and b 

are n dimensional vectors. In the remaining periodic z-direction a Fourier-Galerkin method is 

used for the solution of pressure. The revised solution for the Poisson equation is shown in 

equation 3.9. 
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Figure 3.1. Scheme of the staggered grid arrangement, and the default domain coded into the Turin-DNS 

code. 

 

The immersed boundary technique of Fadlun (2000) is employed to include the presence of 

the cavity in the flow domain, in which body surfaces can be imposed not necessarily 

coinciding with the computational grid, see schemes in figure 3.2. The method was initially 

developed by Peskin (1972) for application to internal blood vessel flows, and re-presented 

later by the same author, Peskin (2002). At the location of the body the no slip condition is 

applied to the velocity field, with wall boundary conditions also imposed for pressure. Note 

that the wall does not have to be stationary, and indeed could change form on each step or sub 

step.. A linear interpolation is deemed suitable for both laminar and turbulent flows to the 

nearest grid points within the flow. In the Turin code the immersed boundary technique is 

imposed at the same time as boundary conditions. An review of the immersed boundary 

technique can be found in Mittal and Iaccarino (2005). 

To apply the immersed boundary technique a body force is added to the Navier Stokes 

equations (2.1). Within the body this force nullifies the velocity field, and for the flow far 

from the boundary the body force is zero. For the first computational points next to the 

boundary the force is applied so as to impose the no-slip condition at the location of the 

boundary – whether the boundary coincides with the grid mesh or not. 
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Figure 3.2. Implementation of the immersed boundary method, left scheme of Fadlun, Verzicco, Orlandi 

and Mohd-Yusof (2000) where the boundary velocity is interpolated to the nearest grid points, right, 

conventional interpolation direction from Giannetti and Luchini (2007), where interpolation is orthogonal to 

boundary surface. 

 

3.1.3 Methodology: DNS Code, Mimetic Method of Abbà and Bonaventura 

The second numerical tool used in this study is a mimetic implementation of the Navier 

Stokes equations. In this finite difference approach the Navier Stokes equations (2.1) have 

been reformulated using the identities of equations (3.11-12) to give the implemented 

equations (3.13-14). Mass and vorticity conservation are ensured through the discretisation of 

the relations, see Abbà & Bonaventura (2008) for further details and proof, and for the 

numerical validation of the scheme. 
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This method also uses a stepping method as presented in the previous section with the 

solution of pressure through the Poisson equation also solved using UmfPack. It also has an 

implementation of the immersed boundary technique, but here is more complex due to the 

introduction of the new variables.  The immersed boundary technique must here be applied to 

the vorticity, kinetic energy and pressure fields. 

3.1.4 Parallelisation of the Numerical Methods 

The most time consuming and greatest memory requirement of the code is for the solution 

of the Poisson equation for pressure. In the scalar versions of the DNS codes this operation 

accounts for approximately 80% of the total cpu time requirement. In both DNS codes this 

aspect has been parallelized, with versions in OpenMP (shared memory directives) and mpi 

(message passing interface, distributed memeory directives) for the ‘Turin DNS’ method, and 

in mpi for the Mimetic method. 

In the Mimetic method the memory requirements for the pressure routine has been 

completely distributed. This signifies that several variables, eg. *.u∇ , never appear in a 

complete form on any one processor. This allows greater scalability of the code, since as the 

problem size increases, more processors can be used to distribute the problem over more 

memory. 

The memory distribution of *.u∇  is represented in figure 3.3 for four processors. This term 

is the right hand side of the Poisson equation for pressure, which makes the sparse linear 

system. The domain is split in the x-direction, with each processor receiving *.u∇  for its part 

of the domain. The first operation to be performed on this variable is a conversion to Fourier 

space, which is then done in independent z-axes. Subsequently however, the linear system 

solves the Poisson equation in x-y planes, thus a redistribution of data is required since data in 

the x-direction is currently distributed. A data swap takes place with a tight condition that the 

whole variable does not appear on any one processor. At the end of the process the steps are 

reversed, with an inverse FFT in the z-direction giving the full solution for pressure. Using 

four processors the solution for the Poisson equation now accounts for approximately 50% of 

the total cpu time requirement. 
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Figure 3.3. MPI distribution of 
*.u∇  for the FFT and sparse linear matrix methods. 

 

3.1.5 Validation: Poiseuille and Backstep Flow in a Channel 

Poiseuille  

During the development stage of the ‘Turin DNS’ code, the initial test case was chosen to 

be the solution of Poiseuille’s flow in a channel. The Poiseuille channel flow has a parabolic 

profile, and for a fully developed steady two dimensional flow since the flow is equal in every 

cross-section the convection term of the Navier Stokes equation is zero. The same is true for 

the diffusion terms in the streamwise and cross-stream direction with the result that the 

pressure gradient is balanced only by the diffusion term in the wall normal direction (equation 

3.15), see Tritton (1984, eqn.s 2.1 – 2.6).  

2

2

dy

ud

dx

dp
=−  (3.15) 

 

Backstep flow of Armaly and Durst 

A common source of verification for codes and models is the backstep problem, since it 

includes flow separation and reattachment points, and recirculation zones. The backstep 

experiment in an expanding channel of Armaly, Durst, Pereira and Schönung (1983) has been 

chosen to check the code since it includes more than one set of separation and reattachment 

points. 

A Poiseuille flow with parabolic profile enters at the inlet. A very large expansion of the 

channel (2:3.88) then follows. For laminar flows the first reattachment length is greater than 

10 step heights downstream of the edge. In this vicinity, owing to the large expansion ratio,  

the flow separates on the upper wall, thus forming a second zone of recirculating flow, 

smaller than the first and typically less than 10 step heights in length.   
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Figure 3.4. Streamlines of (u,v) and contours of streamwise u velocity for the DNS backstep flow. 

 

For an inlet flow of Re_h=200 (corresponding to Re_D=800 for Armaly, Durst, Pereira 

and Schönung (1983), where the Reynolds number is defined with the hydraulic channel 

height), downstream of the backstep there should be, at approximately the same length as the 

reattachment on the lower wall (x1), a point of separation on the upper channel wall (x2), 

before its reattachement (x3), see the results in table 3.1 and streamline and contour plot in 

figure 3.4. 

 

 x1 x2 x3 

Armaly 14 11.5 20 

Turin DNS 12.5 9.7 20.2 

Table 3.1. Separation and reattachment lengths for the lab experiment of Armaly, Durst, Pereira and 

Schönung (1983), and the Turin DNS code.Length/step height. 

 

Although there is not a complete agreement with the separation and reattachment lengths, 

there were several differences between the two experiments. The spanwise boundary 

conditions for the numerical case are periodic, thus a channel of infinite width, the results of 

Armaly are from the centre of a laboratory channel, thus in a bounded domain and 

considering only one 2D profile. The numerical mesh in the downstream portion of the 

channel has a streamwise spacing of the size 0.11 times the step height, a finer mesh is 

required to capture an accurate separation/reattachment point, but given the total length of the 

problem the number of computational points is already high. However, the ratios between the 

points are consistent. Chiang and Sheu (1999) noted differences with their numerical results 

were more pronounced on increasing the domain width, this fact supports these results since 

periodic spanwise conditions were used. 
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3.1.6 Results: Laminar Channel Cavity Flow 

The computational domain considered is that of a channel with a cavity on the lower wall, 

as depicted in figure 3.1, of half height h, spanwise dimension π, and total length L=2π. The 

cavity is rectangular and is of constant aspect ratio 4 with length l=2h, and depth h/2. Also 

depicted in figure 3.1 is the cavity mouth, the interaction/shear plane between the cavity and 

the channel flow, profiles of the flow properties will be considered across this area. Note that 

using the coordinate system defined here a negative v velocity would be from the channel 

centre towards the cavity floor, thus into the cavity. 

The initial condition in the channel is that of a fully developed laminar flow, ie. a parabolic 

profile as in the Poiseuille channel flow solutions of section 3.1.5. The initial flow velocity in 

the cavity is set to zero, and since the parabolic profile approaches zero at the channel wall 

there is no discontinuity in the initial velocity field at the cavity mouth. Integral and point 

values of the flow state in the cavity are used to determine the convergence of the solution, a 

typical temporal plot is shown in figure 3.5, for Re=1000. Note from this plot that the flow 

has been given an excessive number of iterations in order to allow any instabilities to develop, 

it does however develop to a steady flow solution. 
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Figure 3.5. Convergence to a steady state of the total kinetic energy in the cavity for the case Re=1000, note 

that ample time was given for the development of any instability. 

 

Reynolds numbers in the range Re Є [50,2000] were considered, thus close to the Stokes 

regime, up to a limit for laminar flows in a channel. Table 3.2 lists dimensioned parameters 

based on the following flow conditions: 

air at 20 °C and 1 bar, 

dynamic viscosity µ=1.82x10
-5

 Nsm
-2

, 

density ρ=1.19 kgm
-3

, 

channel half height=0.1 m. 

When dealing with the dimensioned pressure, an ambient pressure of 1 atmosphere, 101250 

Pa has been taken at the channel inlet. 
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The mass flow for a fully developed Poiseuille channel flow, per unit time and per unit 

distance in the spanwise direction is given by:  
µ

ρ

3

2 3
hG

U mass =  Tritton (1984 [eqn 

2.9]), where G is the pressure gradient per unit length. 

From this relation we ascertain the bulk flow velocity, 
µ3

2
Gh

U bulk =  since: 

=massU  fluid density . bulk flow velocity . total channel height h
Gh

2
3

2

µ
ρ=  

Now defining the Reynolds number with the bulk velocity and the channel half height: 

2

32

33
Re

µ

ρ

µ

ρ

µ

GhhGh
==  

And rearranging to express the pressure gradient per unit length: 
ρ

µ
3

2Re3

h
G =  

Table 3.2. Dimensioned parameters for the laminar channel flows 50<Re<2000, and turbulent channel flows 

Re=2900 and Re=11000. 
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Figure 3.6 shows the dimensioned streamwise pressure distribution in the channel and 

cavity for four Re. The profiles are taken along the bottom wall of the channel and thus also 

along the cavity mouth, the location of the cavity is shown in the diagram. It can be seen that 

as Re is increased, and when considering a given fixed flow geometry, the pressure gradient 

required to overcome losses at the channel wall is greater for a greater velocity or a reduced 

fluid viscosity. 

In the region of the cavity upstream edge the pressure drops suddenly and then increases 

downstream of the separation point. Moving downstream the channel pressure gradient is 

perturbed by the flow structures within the cavity, more evidently for the cases Re=1000 and 

Re=2000 where a dip in the profile can be noted close to the downstream edge. At the 

downstream edge there is a sharp peak in the profile at the point where the flow stagnates. 

 

 

Figure 3.6. Dimensioned streamwise pressure profiles for Re=100, 500, 1000 and 2000, 

from the Mimetic code. 

 

Now concentrating on a single Re, streamwise pressure profiles at various heights in the 

channel and cavity, for Re=1000, are plotted along with the analytical Poiseuille channel 

pressure profile in figure 3.7. It can be seen that the computational domain was of sufficient 

length to reconstruct the channel flow upstream and downstream of the cavity, since the 
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gradient matches that of the analytical result, with a perturbation caused in the region of the 

cavity, and no interference at the boundaries of the domain.  

 

Figure 3.7. Streamwise pressure profiles at various heights in the channel and cavity for Re=1000, 

from the Turin DNS code. 

 

The Re range considered is seen to give laminar-steady flows using both the Turin-DNS 

and Mimetic methods. Streamlines for this Re range can be seen in figure 3.8, and are 

followed by similar plots taken from literature, figure 3.9. Note that although one of the 

streamline plots from Grace, Dewar and Wroblewski (2004) has a laminar upstream boundary 

layer, the flow transitions to turbulent before reaching the cavity downstream edge. 

It can be seen that for the lowest Re considered that the cavity flow is almost ‘closed’, ie. 

the flow almost reattaches to the floor of the cavity. On increasing Re, the principal eddy 

(PE), the dominant vortical motion in the cavity, moves from the vicinity of the upstream 

edge to close to the downstream edge. The location of the centre of the PE is plotted 

separately in figure 3.10, showing the movement downstream and deeper position into the 

cavity with increasing Re. 
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Figures 3.8. Streamlines (u,v) for the range of laminar and turbulent Re considered. 
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Figures 3.9. Streamline plots . a) low Re  for a cavity of aspect ratio 3, the working fluid used was glycerine, 

Taneda (1979).b) numerical result from Yao, Cooper and Raghunathan.  c) Wind tunnel flow with laminar 

upstream conditions and d) with turbulent upstream conditions from Grace, Dewar and Wroblewski (2004). 
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Figure 3.10. Location of the centre of the principal eddy within the cavity. a) full cavity,with one datum from 

Yao, Cooper and Raghunathan (2004) boundary layer experiemens, and the secondary eddy annotated for the 

Reh=2900 turbulent case. b) enlarged view of a downstream section of the cavity. 

 

Now observing the flow properties at the cavity mouth it can be seen from the profiles of 

wall normal v-velocity in figure 3.11, that there tends to be a large area of low magnitude 

flow, followed by a confined region with a higher magnitude. For the laminar cases 

500<Re<2000 this large area is an outflow, whereas for the turbulent case the flow direction 

and magnitude oscilates, with a peak inflow flanked by two areas of outflow. For all these Re 

there than follows a high magnitude inflow into the cavity in the vicinity of the downstream 
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edge. In the case of Re=100, which corresponds to partially open case, the behaviour is 

different however. An outflow exists close to both the edges, with a large area of low velocity 

inflow between them. 

The total velocity entering and exiting the cavity must be zero in this incompressible flow. 

From the velocity plot it can be seen that the momentum exchange, ie. the magnitude of the 

total momentum flux in the positive wall normal directions, and the negative wall normal 

direction, is linearly proportional to Re. The momentum exchange has been plotted in figure 

3.12 with a fitting showing that it is directly proportional to Re. 

 

Figure 3.11. Dimensioned v wall normal velocity across the mouth of the cavity. 
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Figure 3.12. Fittings made to the kinetic energy and momentum exchange at the cavity mouth. 

 

The total kinetic energy along the cavity mouth is shown in figure 3.13. This quantity is 

dominated by the streamwise velocity component, which is one order of magnitude greater 

than the wall normal velocity, with the spanwise component negligible. This is a measure of 

the entrainment of the channel kinetic energy into the vicinity of the cavity mouth. Here there 

is a non-linear relationship as Re is increased as it can be appreciated that on doubling Re the 

kinetic energy content of this plane is more than doubled. An exponent of 1.4 was found, see 

figure 3.12. 

 

Figure 3.13. Dimensioned Ek kinetic energy across the mouth of the cavity. 
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3.1.7 Results: Flow Properties, Pressure/Streamlines, Turbulent 

The computational domain for the turbulent case has the same dimensions as the laminar 

cases, with a greater resolution. The domain has 330x249x74 grid points and has been 

designed to match as closely as possible the indications for resolution requirements given by 

Mansour, Kim and Moin (1989). The maximum grid spacing in the x-direction, x
+
=11.6 

viscous units (based on the channel Retau=180) far from the cavity, reducing to x
+
=1.44 at the 

cavity edges. In the wall normal direction the resolution is finer than one viscous unit in order 

to compensate for the increased drag caused by the cavity y
+
=(0.83,4.12). In the spawise 

direction the grid spacing is uniform, z
+
=7.85. 

The resolution used here is generally better than that used by Mansour, Kim and Moin 

(1989), (x
+
=17.7, y

+
=4.4 (maximum at centre), z

+
=5.9) except for the spacing in the spanwise 

direction. However, note that the previous case uses a Fourier/Chebychev method, thus the 

accuracy can be achieved with a lower resolution. 

The initial velocity field for the channel is taken from a 2π fully developed turbulent 

channel simulation carried out using a pseudo-spectral method. Statistics for this field 

compare well with the database provided by Moser, Kim and Mansour (1999 & 1999 online). 

This 2π streamwise and spanwise periodic velocity field is repeated to fill the 4π channel-

cavity domain, and the initial velocity in the cavity is set to zero. Due to periodicity and no-

slip conditions at the wall, there are no discontinuities. 

This 2π field is then used to generate a mass inflow at the inlet of the channel, and enters 

the domain at the bulk velocity of the turbulent field, see scheme in figure 3.14 of as 

discussed amoung several turbulent inlet conditions by Lund, Wu and Squires (1998). This 

method ensures a fully developed turbulent profile with excellent statistics, a comparison of 

data from the channel-cavity simulations with the database of Moser, Kim, Mansour (1999) is 

shown in figures 3.15-16, and temporal plots of kinetic energies for this case are shown in 

figure 3.16. 
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Figure 3.14. Scheme of the turbulent channel-cavity flow simulations with the auxiliary 2π input field. 

 

 

Figure 3.15. Comparison of the upstream U velocity profile for a section upstream of the cavity with 

the turbulent channel data of Moser Kim and Mansour (1999). 
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Figure 3.16. Comparison of Reynolds shear stress statistics for a section upstream of the cavity with 

the turbulent channel data of Moser Kim and Mansour (1999). 

 

The statistics shown in figures 3.15-16 are generated from the turbulent channel in the 

upstream of the channel-cavity domain, after 60 time scales and averaged over 35 time scales. 

They are averaged in the spanwise direction, over approximately 4 streamwise length units, 

and over the channel centre. They appear to agree very well with the channel profiles of 

Moser, Kim and Mansour (1999), note however that the statistics provided by these authors 

are generated over a long time and over the whole length of a channel simulation. Here the 

domain includes a cavity, thus a small departure, indicating greater turbulence production is to 

be expected. In any case, these figures show that the upstream section of the channel has well 

developed turbulence with good statistics. 

bU

h
=τ  (3.16) 
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Figure 3.17. Temporal plots of the total (u) and fluctuating (u’) kinetic energies in the cavity volume. 

 

In figure 3.8 the mean streamlines for this turbulent cavity flow can be seen. As was seen 

in the laminar cases a single primary eddy dominates the downstream half of the cavity, 

inducing a pressure low at its centre. In the upstream half of the cavity there is also the 

appearance of a further smaller secondary eddy, in agreement with the images from Grace, 

Dewar and Wroblewski (2004). It should be noted that this plot shows that the overall 

dynamics of the mean flow for both the laminar and turbulent cases are comparable. 

The mean pressure along the mouth of the cavity is shown in figure 3,18. Close to the 

upstream edge there is a slight increase in the pressure, but the general trend over the cavity is 

a reduction, with a minimum in the region of the principal eddy in the downstream half of the 

cavity, before peaking at the downstream edge. 
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Figure 3.18. Mean pressure along the mouth of the turbulent cavity. 

 

The mean velocity entering / exiting the cavity mouth is shown in figure 3.11. As in the 

laminar cases there is a relatively small momentum exchange in the upstream half of the 

cavity, with greater magnitude velocities confined to a smaller section close to the 

downstream edge. The velocities in the vicinity of the principal eddy in this case are much 

greater than those in the laminar counterpart, however  here the exit velocity very close to the 

downstream edge is much greater than the velocity over the eddy. 

In figure 3.13 the profile of mean kinetic energy over the mouth is plotted. It can be noted 

here that the kinetic energy increase, as one moves in the downstream direction, is smoother 

than in the laminar cases.  

 

 

 



40 

 

 

Figure 3.19. Profile of turbulent kinetic energy along cavity mouth. 

 

In figure 3.19, the turbulent kinetic energy across the cavity mouth is shown. As the shear 

layer develops the fluctuation energy has the same increasing trend as the mean laminar and 

turbulent kinetic energy, until it reaches a plateau close to the downstream edge. Here the 

fluctuating kinetic energy remains relatively constant, before peaking again closer to the 

downstream edge. 

Velocity vectors and the velocity magnitude, ( )22
vuv +=

r
, within the cavity are shown 

in figure 3.20. The unit vector length is consistent through the laminar cases, allowing the 

relative movement of fluid to be seen throughout the cavity. The introduction of higher 

velocity fluid to the cavity on increasing Re can be observed, and it is interesting to note the 

great difference in magnitudes when the flow becomes turbulent. 

In order to be able to better define the Reynolds number seen by the flow in the cavity, the 

mean velocity in the cavity volume, 
( )

N

vu
v

NN

N

i

22

1

+∑
= =r

, has also been computed. Now 

considering the mean dimension of the cavity: (length+depth)/2=2.5, the new cavity local 

Reynolds number, Recavity, can be defined. See table 3.3 when the new range of Reynolds 

numbers is presented, based on the mean values from this analysis. 
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Re Bulk channel velocity 

(mm/s) 

Recavity Cavity velocity 

(mm/s) 

100 15.3 16.0 0.962 

250 38.2 32.5 1.956 

1000 152.9 100.0 5.996 

2000 305.8 169.0 10.120 

2900 459.2 1176.0 70.560 

 

Table 3.3.   The Reynolds numbers of the channel and cavity, Re and Recavity respectively, and  the 

corresponding dimensioned velocity. 

 

Also visible from the table is the jump in values of the new Recavity range. On moving from 

Re=2000 to Re=2900, ie. incrementing Re by one half, we see almost an order of magnitude 

increase in Recavity. In the range 169 < Recavity < 1176 the flow moves from the laminar to the 

turbulent regime. 
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Figure 3.20.   Velocity vectors (u,v) and the value of ( )22
vuv +=

r
within the cavity. Vector lengths for 

the laminar cases, 100 < Reh <2000 are in proportion. 
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Figure 3.23 shows two instantaneous images of the fluctuating u’ component in two x-z 

planes within the domain. Figure a) is taken at y+20 from the top wall, the wall without the 

cavity. Here the high and low speed streaks, can be noted. Figure b) however is taken at y+20 

from the wall including the cavity. Comparing these two figures one can immediately note the 

interference of the presence of the cavity upon these elongated streamwise structures. A 

greater difference between the high and low u’ values can be noted and more confined 

pockets of perturbation as opposed to organized streaks can be seen downstream of the cavity. 

 

Figure 3.23. Contours of u’/u_tau at y+20 from the channel wall a) top of channel, b) bottom wall with cavity. 
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3.2. Shearless Turbulent Mixing 

In this chapter relevant concepts of homogeneous isotropic turbulence are first discussed 

before the presentation of the simplest turbulent mixing, namely a mixing of two 

homogeneous isotropic turbulence fields having only one inhomogeneous property between 

them. The transport properties of these fields are stated, before a study of the nature of the 

statistics of the turbulent transport in this mixing. The numerical methodology is briefly 

summarized and in the final chapter the energy balance and pressure-velocity correlation 

coefficient is derived. 

 

 

3.2.1 Homogeneous Isotropic Turbulence, Important Considerations 

A homogeneous and isotropic turbulence is the simplest type of turbulence. The 

assumption of non-directionality makes it a hypothetical flow, but its investigation allows us 

to understand the nature of fluid behaviour in all turbulent flows, and is particularly more apt 

in configurations which approach isotropy. Indeed due to its relative simplicity, it is the most 

investigated turbulence theoretically and experimentally, Hinze (1987). 

The Velocity statistics of isotropic turbulence are Gaussian. In this configuration skewness 

(3.17), the third velocity moment, remains zero and the kurtosis (3.18), the fourth order 

moment, is 3 (flatness equal to zero). The only transport mechanism here is the turbulent and 

molecular diffusion, the Gaussian state indicating a lack of turbulent intermittence. 

 

( ) 2
3

3

3

3

3

u

u
S =  (3.17)  

( )2
2

3

4

3

u

u
K = (3.18) 

 

3.2.2 The Mixing of Two Homogeneous Isotropic Turbulence Fields 

The mixing of two homogeneous isotropic turbulence fields differing in only one property 

gives the simplest turbulent mixing configuration. This kind of mixing is characterized by the 

absence of a mean shear, thus there is no production of turbulent kinetic energy and no mean 

convective transport. It is therefore a decaying turbulence mixing in which all interaction is 

the result of the fluctuating pressure and velocity fields. 
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At high Reynolds numbers, for two mixing flows that are homogeneous and isotropic, each 

field can be defined by two parameters in Kologorov’s theory, its kinetic energy and integral 

scale. In this investigation the two fields are identical apart from the kinetic energy content, 

thus setting up a ratio of energy across the mixing. 

Figure 3.24  shows a scheme of this flow in which direction x is the homogeneous mixing 

direction.  Regions of high (E1) and low (E2) energy are separated by a mixing layer of 

thickness 2∆. 

 

 

Figure 3.24. Scheme of the HIT mixing, E1 high energy and E2 low energy regions, separated by 2 mixing 

layers in the periodic domain. 

 

It can be shown that the lengthscale of a turbulence field can be independent of its kinetic 

energy, thus it is possible to obtain, numerically, a dishomogeneity in the kinetic energy of 

two HIT fields while maintaining homogeneity in the lengthscale. 

Normalising the integral scale by the kinetic energy (equation 3.19) makes it independent 

of the level of kinetic energy (see Batchelor, 1953, pg. 105). It is only dependent upon the 

energy distribution over the wavenumbers.  
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Empirical investigations of this flow were first performed by Gilbert (1980) and Veeravalli 

& Warhaft (1989) (V&W) through the interaction of two passive grid generated turbulence 
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scales. These two wind tunnel investigations used perforated plates and bar grids, and had 

differing levels of success in attempting to induce a shear free mixing layer between two 

homogeneous and isotropic turbulence fields, due to the different experimental setups. They 

investigated both differing energy ratios and length scale ratios. 

V&W found that the shearless mixing is non Gaussian, which was in contrast to the 

findings of  Gilbert, who did not find such intermittency. V&W postulated that the likely 

cause of this difference in findings were the low ratios between the two interacting fields in 

Gilberts case, where the lengthscale and energy scale ratios were both less than 2. 

In passive grid laboratory experiments the gradients of integral scale and kinetic energy are 

intrinsically linked. If the solidity of the mesh is changed, not only the lengthscale of the 

turbulence is altered, but also its energy scale. Numerical investigations have the advantage 

over the empirical investigators in that the turbulence properties can be individually 

controlled as discussed above. Such numerical investigations have been carried out by Briggs, 

Ferziger, Koseff and Monismith (1996), Knaepen, Debliquy and Carati (2004), Tordella and 

Iovieno (2006, 2007), Iovieno, Bailey and Tordella (2006), Bailey (2006), and by Tordella, 

Iovieno and Bailey (2007, 2008). 

In these investigations, and in those of V&W, the mixing layer was seen to be intermittent 

and the velocity statistics non-Gaussian. It had been considered that as the lengthscale ratio 

approaches unity, thus for a single scale mixing, that the flow remains Gaussian. Briggs 

showed that this is not the case, albeit with a mild lengthscale ratio (0.93). Tordella (2007) 

went on to characterise the effect of the concordance or opposite of the lengthscale/energy 

scale ratios, finding that mixing penetration was enhanced when the ratios were concordant 

and lower where they are opposite. 

The work of V&W was fully reproduced numerically by Knaepen, but working at higher 

Reynolds number. This work showed that the flow Reynolds number has little if any effect on 

the results.   

The state of the art has now moved on to active-grid control techniques, in which the 

energy and length scales in the turbulence fields can now be better controlled through 

actuators placed on the bar grid. An example of the initial studies of the decay of isotropic 

turbulence using such grid agitation is that of Ling and Wang, (1972), with more modern 

works using these techniques from Kang, Chester and Meneveau (2003), Kang and Meneveau 

(2008). 
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3.2.3 Methodology 

The computational frame is a parallelepiped domain with periodic boundary conditions in 

all directions. In this infinite domain the Navier-Stokes equations (equation 2.1) are solved 

with a with a fully dealiased (3/2 rule) Fourier-Galerkin pseudospectral method. Time 

integration is performed using a fourth order explicit Runge Kutta scheme. A parallelised 

version of the code is presented in Iovieno, Cavazzoni and Tordella (2001). 

The initial conditions are generated from a (2π)
3
 homogeneous isotropic velocity field 

taken from Wray (1998). To create the initial condition, the velocity field is repeated creating 

a 4π (2π)
2
 domain.  In one side of the domain, each velocity component is multiplied by a 

constant, creating a ratio of energy between the fields, but keeping similar spectra thus 

introducing no ratio of scales. A hyperbolic tangent function is then used to smooth the 

interface and to define the initial mixing layer. 

Tests were performed for domains of dimension 4π x (2π)
2
 with 256x128

2
 grid points and 

with an initial mixing layer representing 1/40 of the inhomogeneous dimension (largest grid 

dimensions in the mixing inhomogeneous direction). Further tests with dimensions 8π x (2π)
2
 

and 512x128
2
 points and initial mixing layer 1/80 of the inhomogeneous dimension were 

performed to verify the numerical accuracy. Due to periodicity, two mixing layers are actually 

simulated, all subsequent results are averaged over these two layers. 

For high Reynolds numbers the two turbulence fields decay algebraically with the same 

decay exponents, thus the initial ratio of energy remains constant throughout the whole 

mixing process, see figure 3.25, where the temporal decay is shown for energy ratios 6.7 and 

12.1, with their initial spectra in the inset. 

 



48 

 

 

Figure 3.25. Turbulent kinetic energy decay of the interacting fields, and inset, initial energy spectra. 

 

3.2.4 Results: Intermittency, Asymptotics and Gaussian State 

It was previously thought, and with well founded reasoning, that a HIT mixing devoid of a 

lengthscale ratio would behave as a single HIT field in that it would not mix and would not 

show intermittence. Results from these numerical simulations show that on the contrary, in 

these conditions, the mixing can be highly intermittent and that this intermittence is dependent 

on the energy ratio ε. 

The fluctuating velocity component u is responsible for the transport across the mixing. 

The moments of this component are analysed in order to determine the level of intermittency.  

Figure 3.26 shows the skewness in the inhomogeneous x direction for the mixing with energy 

ratio of ε =100. External to the mixing layer, in the isotropic field (high energy on the left), it 

can be seen that skewness vanishes, remaining zero.  Closer to the centre of the mixing there 

is a departure from zero skewness, peaking on one side of the mixing centre. 

Also shown in figure 3.26 is the penetration, η. The penetration is the extent to which one 

turbulence field has encroached into the other, and signals the location of the largest 

intermittent bursts. Here the high energy side from the left side of the mixing center has 

penetrated into the low energy side of the mixing. 
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Figure 3.26. Typical profile of skewness across the mixing direction, x axis has been normalised by ∆, the 

conventional mixing layer thickness. The energy ratio here is 100, at t/t_tau=3.5. 

 

 

Figure 3.27. Typical profile of the kurtosis across the mixing direction, x axis has been normalised by ∆, the 

conventional mixing layer thickness. 

 

The time dependent maximum of the skewness for four cases is presented in figure 3.28, 

and for kurtosis in figure 3.29. After approximately 3 eddy turnover times, less for the lower 

energy ratio cases, the maxima have ceased to rise.  At this stage the turbulence has entered a 
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self-similar state of decay. Statistics are calculated from this self-similar stage, thus discarding 

the initial transient. 

Also shown in figures 3.28-29 are the time evolution of the maxima of skewness and 

kurtosis from the V&W experiments. Here the spacial evolution in the laboratory has been 

converted to a temporal decay using Taylor’s hypothesis, based on the wind tunnel mean flow 

velocity and distance from the grid. Note that the energy ratios of the empirical data are much 

lower than those of the numerical data owing to the physical limitations of the lab 

experiments. There is a good agreement in the initial development of the mixing, as well as 

the post transient behaviour. 
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Figure 3.28. Temporal evolution of the maximum of the skewness. a) for four energy ratios in the numerical 

simulations. b) experimental data from the lab experiments of Veeravalli and Warhaft (1989). 
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Figure 3.29. Temporal evolution of the maximum of the kurtosis. a. for 4 energy ratios in the numerical 

simulations. b. experimental data from the lab experiments of Veeravalli and Warhaft (1989). 
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Figure 3.30. Maximum of the skewness as a function of the initial energy ratio, data from 4π and 8π 

simulations, lab experiments of Veeravalli and Warhaft, and numerical simulations of Briggs. 

 

 

Figure 3.31. Maximum of the kurtosis as a function of the initial energy ratio, data from 4π and 8π 

simulations, lab experiments of Veeravalli and Warhaft, and numerical simulations of Briggs. 
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Figure 3.32. Normalised position of the maximum of the skewness in the mixing layer as a function of the 

initial energy ratio, data from 4π and 8π simulations, lab experiments of Veeravalli and Warhaft, and 

numerical simulations of Briggs. 

 

The maximum of skewness as a function of energy ratio is plotted in figure 3.30, for 

energy ratios in the range E1/E2 Є (1, 10
6
).  This plot consists of data from the regular 4π x 

(2π)
2 

as well as the more highly resolved domain 8π x (2π)
2
, a collapse of the data onto a 

single curve is evident, thus confirming the sufficient grid resolution.  Below 10
2
 the 

maximum scales almost linearly with the logarithm of the energy ratio, and for higher ratios it 

can be seen that an asymptotic limit has been shown.  Also plotted here are empirical data of 

Briggs and V&W which are in good agreement with the low energy ratio results.  Note that a 

small difference is likely to occur since in the V&W experiment the scale ratio was not 1. 

The maximum in kurtosis, plotted as a function of the energy ratio, figure 3.31, reaches 

very high values with respect to the Gaussian value of 3, indicated by the dashed line.  This 

signifies the presence of extremely intense intermittent events.  The location of these events, 

indicated by the normalised penetration, figure 3.32, is in the low energy side of the mixing.  

Indeed from this figure a maximum of 1.2 is obtained for energy ratios from 10
2
 to ∞.  The 

penetration is the instantaneous distance from the initial mixing centre, normalised by half the 

instantaneous mixing layer thickness.  A value of 1.2 is therefore a considerable penetration 

of the high energy field into the low energy. 
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Figure 3.33. Contours of kinetic energy at two time instants for E1/E2=6.7, top. t/τ=0.8, bottom t/τ=2.5. 
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4. Energy Balance in Sheared and Shearless Flows 

Chapter 4 looks in depth at the energy balance for the two flow configurations considered. 

Continuing the analysis of the cavity profiles, the products of the pressure and velocity are 

now considered together at the cavity mouth. In section 4.1 the mean energy balance in 

sheared laminar and turbulent cavity flows can be found, and in section 4.2 the fluctuating 

energy balance is presented. In the final section 4.3 the energy balance in the shearless 

turbulent mixing is considered. The integral of the pressure and kinetic energy transports 

across the respective interaction surfaces are determined before developing the energy balance 

in each section. 

4.1. Mean Pressure/Kinetic Energy Transport for Cavity Flows 

Continuing the analysis of the flow properties at the mouth of the cavity, we now turn our 

attention to forming the products which make up the transport terms, their integral and the 

relation between the pressure and kinetic energy transports. The product of the pressure and 

wall normal v velocity at the cavity mouth is depicted in figure 4.1 for the laminar cases 

Re=100, 500, 1000 & 2000, and the turbulent case Re=2900. For all cases it can be seen that 

the greatest proportion of pressure transport is in the region of the downstream forward facing 

step of the cavity, with a comparatively small magnitude pressure transport along the rest of 

the cavity. The profile very much takes its form from the velocity profile found in figure 

(3.12). 
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Figure 4.1. Dimensioned pressure transport across the cavity mouth for a range of Re, 

insert omitting the turbulent case. 

 

It is interesting to note that the most significant acoustic emissions from cavities are 

associated with interactions at the downstream edge, Howe (2004). Figure 4.1, even though 

some of the flows depicted are laminar steady, which are intrinsically silent, Colonius (2004), 

shows immediately where the greatest interaction between the velocity and pressure fields is 

located. 
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Figure 4.2. Dimensioned kinetic energy transport across the cavity mouth, left ordinate for the laminar cases, 

right ordinate turbulent case. 

 

In figure 4.2 the kinetic energy transport along the mouth of the cavity is depicted. The 

shape of the graph resembles that of the wall normal v velocity graph. Most of the energy 

transfer takes place in the downstream half of the cavity. In all cases the kinetic energy 

transport increases moving downstream owing to the greater streamwise velocity in this plane, 

and for Re 500 and greater it can be seen that the greatest magnitude transport occurs close to 

the downstream edge for the laminar cases. The negative peak in kinetic energy transport in 

the turbulent case can also be found in the same region, however the maximum transport in 

the turbulent case is a relatively very high magnitude outflow very close to the downstream 

edge. 
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Figure 4.3. Dimensioned integral of the kinetic energy and pressure transports over the range of Re 50 to 

2000. 

 

In figures 4.3 the total dimensioned pressure and kinetic energy transports are plotted as 

functions of Re. In both cases the graphs are always negative, indicating that there is a flow of 

mean energy and pressure into the cavity. 

The kinetic energy transport can be seen to continually increase in magnitude with Re, 

indeed as Re is doubled the transport is more than doubled, this is as a direct consequence of 

the increased kinetic energy entrained into the cavity mouth area as seen in the previous plots, 

figure 3.13. 

The pressure transport however reaches a maximum around Re=1000 and is then seen to 

reduce if Re is increased further. Figure 4.1 showed that the strength of the pressure transport 

increases with Re, despite this it can be seen in figure 4.3 that the net transport of pressure 

remains relatively constant. Increasing from Re=1000 the increase in pressure outflow from 

the cavity is evidently greater than the increase in the inflow. 

Considering now the ratio between these two transports for the laminar and turbulent mean 

flow, alpha, equation 2.9, is shown as a function of Re in figure 4.4. It can be seen that for 

increasing Re, whether laminar or turbulent, this coefficient tends to an asymptotic limit, 

signifying that for high Re there is a common ratio between the mean pressure and kinetic 

energy transports. 
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The asymptote is reached where Re exceeds 2000. It is around this Re that the first 

instances of unsteadiness can be expected in this flow. On incrementing Re further the flow 

will become transitional, where pockets of agitated flow, or turbulent structures will begin to 

appear. It is at this stage that the cavity flow starts to emit noise since, as discussed by Howe 

(2004), these structures impinge of the downstream edge, causing a time disturbance to the 

pressure field. When the flow transitions to turbulent the generation of the structures is more 

frequent and they usually have more energy, and thus the pressure disturbance greater. This 

set of phenomena, unsteadiness, transition and turbulence appear when the asymptote is 

reached. 

 

 

Figure 4.4. Ratio between pressure and kinetic energy transports. 

 

4.2. Fluctuating Pressure/Kinetic Energy Transport in the 

Channel Cavity Flows 

In this section we will first consider the fluctuating transports in the whole flow domain, 

before then concentrating on the balance close at the cavity mouth. Figure 4.5 shows the 
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profile of the modulus of the fluctuating pressure and kinetic energy transports in a section of  

the channel flow upstream of the cavity, equations 4.1-2. 

 

( )2
''vp  (4.1)                   

2

2

''
' 







 ii uu
v  (4.2) 

 

The total transports are zero at the wall and close to zero in the centerline region, close to 

the wall they reach a peak however. The cavity is located on the bottom wall at y=-1. It can be 

seen that the turbulent transports are almost 50% greater on the lower side of the channel 

centerline. This shows that the cavity has some upstream influence on the fluctuating 

components on the lower side of the channel. 

 

 

Figure 4.5. Magnitude of the total pressure and kinetic energy  

transports in the channel upstream of the cavity. 

 

Figure 4.5 shows that in the channel the pressure transport is always less than kinetic 

energy transport, and that in the centerline region it represents its greatest proportion, however 

in this location both transports are relatively low. At the channel centre, the convective 

transport is the greatest transport, thus the combined sum of the pressure and kinetic energy 
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transports is globally less significant. In general the pressure transport is 20% ± 10% of the 

kinetic energy transport in the rest of the profile, ie. it is secondary to the kinetic energy 

transport and is in agreement with the discussion of Yoshizawa (2002). 

The turbulent kinetic energy transport along the cavity mouth is shown in figure 4.6. The 

overall trend is for a flow of fluctuation energy into the cavity, reaching a peak upstream of 

the location of the principal eddy. There is then a confined outflow close to the downstream 

edge.  

 

 

Figure 4.6. Profile of turbulent kinetic energy transport along cavity mouth. 

 

On the other hand the fluctuating pressure transport, shown in figure 4.7, oscillates 

between positive and negative values moving downstream, with increased intensity close to 

the downstream edge. Alpha for the fluctuating transport at the cavity mouth was 

calculated to be 0.58. 
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Figure 4.7. Profile of turbulent pressure transport along cavity mouth. 

 

4.3. Pressure/Kinetic Energy Transport in Shearless Turbulence 

Mixings 

In the initial condition we have a homogeneous isotropic turbulent mixing with one 

inhomogeneous property and no mean transport between the two turbulence fields exists. On 

analysing the 2
nd

 and 3
rd

 order moments it can be seen that a transport develops, leading to an 

anisotropic velocity field, see figure 4.8.. 

This configuration represents a flow from which we can make fundamental conclusions 

about the development and interaction of turbulent transports. The flow is free of mean shear 

and scale ratio, thus no production of turbulent kinetic energy. The only interactions are those 

between the fluctuating pressure and velocity fields. Under these conditions a universal 

relation between the pressure transport and the kinetic energy transport for varying energy 

ratios across the mixing has been found. For this HIT mixing at Reλ =45, alpha has been 

determined to be 0.37, and thus the pressure transport is not dominated by the kinetic energy 



64 

 

transport. In addition, it has been seen that the pressure transport is in the opposite direction to 

the kinetic energy transport. 

Now comparing the current result and that of the previous section, where alpha was 

determined to have a value of 0.58, we are able to attribute some of the differences. We can 

also consider the turbulent cavity flow as the mixing of two regions differing in energy 

content. The energy ratio between the cavity and a volume of equal size in the channel was 

determined to be E1/E2 = 15.39, which lies within the range of energy ratios considered for the 

shearless mixing, E1/E2 Є (1, 10
6
).  When moving from the shearless HIT mixing to that of the 

turbulent cavity flow, the increased molecular level transport resulting from the introduction 

of shear is seen to augment the relative importance of the pressure transport. Indeed shear 

introduces greater recirculation into the cavity mouth region.  
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Figure 4.8. Anisotropy of the second and third moments in the mixing layer. For the second order moment in 

a) the dashed line marks the isotropic value of 0.33 from which the simulation starts. In the case of the third 

order moment b) the initial value is undefined, here the dotted line marks the asymptotic estimate. 
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Conclusions 

The energy balance in sheared and shearless flow configurations has been considered. 

Laminar and turbulent channel flows though a channel with a cavity on one wall have been 

numerically investigated. The velocity, pressure and kinetic energy properties in the whole 

domain and along the mouth of the cavity were analysed. It was seen that the momentum 

exchange between the cavity and the channel is directly proportional to the Reynolds number 

of the flow. The kinetic energy and pressure increase with Reynolds number, but with an 

exponent of 1.4. 

On increasing the Reynolds number from low, almost Stokes flow values, the mean 

principal eddy dominating the dynamics of the internal cavity flow is seen to tend, at higher 

Reynolds, to a steady position in the downstream half of the cavity. As the Reynolds number 

is increased this principal eddy increases strength as more kinetic is present in the shear layer, 

and in doing so has a greater effect upon the pressure field in and around the cavity, inducing 

a pressure low at its centre. 

The mean dynamics of the laminar and turbulent cavity flows for the large Reynolds 

number simulations has been shown to have similar effects upon the balance of energy in this 

flow, with an asymptotic limit found for the ratio of the mean pressure and kinetic energy 

transports across these two flow regimes. A link has been found between the transports of 

energy, in the form of pressure and in the form of kinetic energy, which permits a relatively 

simple study to offer some insight into the dynamics and consequences, in more complex 

compressible and/or acoustic studies of the topic. The asymptotic state is reached in the 

Reynolds range where unsteadiness, noise emission and transition to turbulence are expected 

to first appear. Indeed on calculating the local cavity Reynolds number, the range 169 < 

Recavity < 1176 was defined where unsteadiness and transition develops. 

The energy balance has also been analysed for the fluctuating part of the flow for the 

turbulent cavity case. In both the channel and cavity the results can be seen to agree well with 

previously published results for flows with recirculation zones, such as bluff body flow and 

backsteps. Within the recirculating zones of the cavity the pressure transport was seen to be 

non negligible compare to the kinetic energy transport, whereas in the channel, where the 

flow is uni-directional, the pressure transport is dominated by the kinetic energy transport. It 

was seen that the pressure transport at the cavity mouth for this sheared flow is not however 

dominated by the kinetic energy transport, and was found to be 0.58 its value. 
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A turbulent configuration lacking shear was then considered: the shearless turbulent 

mixing of two homogeneous isotropic turbulent fields, differing only in the energy content. 

This configuration can be considered to be the simplest kind of turbulent mixing. The mixing 

is without a gradient of scale or a mean flow, and thus no production of kinetic energy. 

Despite this, when varying the energy ratio over the mixing, and still maintaining equal scale, 

a departure of the velocity statistics from a Gaussian state was observed. This showed for the 

first time that a lack of kinetic energy production and scale ratio is not a sufficient condition 

to inhibit turbulent intermittence. Indeed the intermittence is characterized by strong bursts of 

velocity penetrating across the mixing, shown by the high values of skewness and kurtosis in 

the velocity statistics. Indeed an asymptotic limit of the level of intermittence has been found. 

The development of anisotropy in the third and fourth moments has also been presented. 

On considering the energy balance of this configuration it was shown that the kinetic 

energy transport across the mixing is countered by a none negligible pressure transport. The 

pressure transport acts in the opposite sense and with a magnitude 0.37 of the kinetic energy 

transport. 

Considering together the turbulent flows investigated here we see the underlying reasons 

for the differing energy balance. The cavity can be seen as a sheared mixing between two 

volume differing in energy content, the energy ratio for this cavity flow was determined to be 

E1/E2=15.39. The shearless mixing considered energy ratios in the range E1/E2 Є (1, 10
6
). 

Moving from the shearless mixing to the sheared cavity flow the ratio of transports increases 

from 0.37 to 0.58, owing to the added recirculatory flow as a result of the increased inter-

molecular activity. Thus the recirculation increases the rolw played by pressure transport in 

the energy balance. 
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