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Introduction

We consider in this thesis the applications of the angular momentum budget
in fluid dynamics problems. The two main situations in which a balance of
angular momentum is worthwhile to be considered, that is structured flows
and a homogeneous fluid when balances on finite volumes are introduced,
are discussed in chapter 1.

The first situation arises when one deals with a non homogeneous fluid
with internal structures on which external forces and couples may act, as
liquid crystals, blood flow or dusty plasmas (Batchelor, 1970) or granular
media ( Cercignani & Lampis (1988), Goldshtein & Shapiro (1995)). In
these cases the angular momentum budget is no more equivalent to the
momentum budget and a new variable, the intrinsic angular momentum per
unit volume, must be brought in.

In the latter case, the equation for the intrinsic moment of momentum
averaged over finite fluid volumes is considered. A new representation of
it in terms of an infinite sequence of independent equations by means of a
series expansion in terms of the linear dimension of the volumes is intro-
duced, extending earlier deductions by Nigmatulin & Nikolaevsky (1970)
and Chatwin (1973). The first order term is just the Helmholtz equation
while the remaining terms can be viewed as balances for a kind of higher
order vorticities.

Applications to turbulence of angular momentum balance are then con-
sidered (Mattioli (1933), Nikolaevsky (1970), Nikolaevsky (1973), Eringen
(1972)). Since Mattioli’s earliest application in 1933, the equations of mo-
tion were often integrated over finite volumes to evidence the evolution of the
large scales of turbulence. Even with fluids deprived of internal structures,
asymmetry was associated to the turbulent stress in Mattioli (1933, 1937)
and in Nicolaevsky (1970, 1973). In Eringen (1972) the micromorphic the-
ory of structured media was applied to turbulence. In all these approaches,
the balance equations for momentum and angular momentum are coupled.



Introduction

It will be shown that this coupling, based on a supposed antisymmetric
part of the stress tensor, is devoid of physical rationale. However, starting
from the analysis of the structure of the angular momentum budget over
finite volumes, and from the scaling law of turbulent diffusion, a new large
eddy model, based on the use of angular momentum to represent turbulent
transport, is proposed in chapter 2. In this model the coupling is given by a
functional dependence of the turbulent eddy diffusivity over the angular mo-
mentum of a finite volume of fluid. Even if it is proposed and subsequently
validated mostly in the framework of incompressible turbulence, it is thought
also for possible applications to flows containing suspended particles with
inertia and on which external couples may act, for which an intrinsic an-
gular momentum equation must be always taken in account. Its validation
comprehends standard tests, which include not only the a priori test (Clark
et al. (1979)) and the simulation of homogeneous decaying turbulence, but
also the analysis of a particular class of turbulent mixings, characterized by
the absence of mean shear. In this special configuration the two turbulent
flows that are going to mix differ in the turbulent kinetic energy.

Results present in literature about shearless mixings, either coming from
grid turbulence experiments (Veeravalli & Warhaft (1989)) and from direct
numerical simulation (Briggs et al. (1996)) are reproduced by means of
this new angular momentum model. Moreover, new results are presented
in chapter 3 for a wider range of cases, in which the two turbulence fields
that are going to mix differ also in their spectral content. The fundamental
role of the gradient of an integral scale gradient, adverse or concurrent to
the gradient of kinetic energy, on the global characteristics of this class of
mixings is shown. This latter investigation might be of interest in gaining
new information and insight in the turbulent self-interaction processes.



Chapter 1

Angular momentum and
symmetry

1. Introduction

In continuum mechanics the angular momentum balance is usually consid-
ered only in the discussion of the symmetry of the stress tensor. The angular
momentum of a continuum mechanics material point is of course taken as
X A pu because a point has no dimension. In this way it has only a trans-
port term and no intrinsic angular momentum for the motion relative to its
centre of mass. From this it follows that the angular momentum balance is
the moment of the momentum balance plus the antisymmetric part of the
stress tensor. In fact, see for example Gurtin (1981), the budget of angular
momentum is

d

— Ei-x'udx:/ f—:i-x'Tmnde—l—/ €kl pbrdx 1.1
at /A(t) jkTjPUK DA jkLjLk A kL POk (1.1)

where T;; is the macroscopic stress tensor, b; the density of external body
forces and e, Ricci’s alternating tensor. From (1.1) it is obtained

Di(eijrxjpur) = €ijp Tk + €ijuTi0mThm + €ijrTjpbr

and, after the moment of the momentum balance equation is subtracted,
this yields to
Ez‘jijk =0 (1.2)

that is, the antisymmetric part of the stress tensor must vanish. This result
has a counterpart in the kinetics theory by Boltzmann, where it is shown
that the macroscopic stress tensor is obviously symmetric because the only
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contribution is the inertial flow of momentum, that is T;; = u;u;, where
is the velocity of molecular fluctuations respect to the mean motion.

However, there are some physical situations in which this representation
of angular momentum is not satisfactory. To deal with a non-homogeneous
fluid with internal structures on which external forces and couples act, it is
necessary to introduce a different balance of angular momentum, in which
the presence of an intrinsic angular momentum and of external couples affect
the symmetry property of the stress tensor, see Batchelor (1970), Condiff
& Dahler (1964), Dahler & Scriven (1963), Almog & Brenner (1999). In
this case the moment of the momentum equation is no more equivalent to
the angular momentum budget and a new variable, the intrinsic angular
momentum per unit volume, must necessarily be brought in. This leads
to a non trivial angular momentum balance equations, coupled with the
momentum balance equation. The same appears dealing with granular flows,
see Cercignani & Lampis (1988), Goldshtein & Shapiro (1995).

A continuum theory that attempts to account for these aspects is the
micropolar theory (Eringen (1966), Eringen (1992), Lukaszewicz (1999)).
This model views the medium as a collection of material systems, the micro-
elements, owning momentum, intrinsic angular momentum and energy. The
micro-elements may contain internal structures (like liquid crystals, blood
cells,..), however the fluid is viewed as monophase. The motion of the mi-
croelement is fully described by the velocity of its centroid and by further
continuous field functions which portray the internal motions of the element.
In an incompressible flow Eringen’s theory leads to a set of twelve differential
equations, from which the intrinsic moment of momentum can be recovered
by taking the antisymmetric part of the microgyration tensor. The equation
of the intrinsic angular momentum appears to be coupled to the momentum
equation expressed in terms of the centroid velocity in such a way as to
establish a link between the intrinsic motion inside the microelements and
the mean velocity field.

Moreover, during the last century the equation of angular momentum
balance has been applied few times to discuss the behavior of turbulent flows.
Since the earliest Mattioli’s application in 1933, the equations of motion were
often integrated over finite volumes to evidence the evolution of the large
scales of the turbulence. Even with fluids deprived of internal structures,
asymmetry was associated to the turbulent stress in Mattioli (1933, 1937)
and in Nicolaevskii (1970, 1973). In Eringen (1972) the micromorphic theory
was applied to turbulence.

An analysis about the structure of the angular momentum budget over
finite volumes of linear dimension ¢ is carried out in §2 of this chapter. The
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analysis is relevant to all situations where the fluid may be considered lo-
cally homogeneous. Through a power series development in the square of
the linear dimension of average we show that the balance for the intrin-
sic momentum may be represented by an infinite succession of independent
equations obtained applying linear antisymmetric operators to the momen-
tum balance. The first order term of the sequence is the vorticity equation,
as remarked also by Nigmatulin & Nikolaevsky (1970) and Chatwin (1973)
while the higher order relations are not reducible to it and may be viewed
as high order vorticity budgets.

In §3 the principal features of structured flows are discussed, with em-
phasis to the relevance of angular momentum balance.

Applications to turbulence of theories relevant to structured flows are
discussed in §4 through the analysis of the symmetry property of the Navier-
Stokes equations. The common aspects of these theories and their physical
support are discussed. This discussion will be the basis for the argument of
chapter 2, where, in the ambit of turbulence modeling, a different kind of
coupling between the momentum and angular momentum turbulent equa-
tions, which does not rely on a supposed existence of the antisymmetric
part of the stress tensor, is suggested. A large eddy scale model based on
the proportionality of the turbulent diffusivity to the intrinsic moment of
momentum will be proposed.

2. Angular momentum in space averaged flows

2.1 Spatial averages

In the study of turbulence and of suspensions space averages are often in-
troduced to eliminate the small scale turbulent fluctuations or the details of
the motion around the suspended particles and anyway to isolate the fea-
tures of the large scale behaviour. When applied to turbulent flows, this
leads to the so called large eddy simulation. Even if it was first introduced
in an atmospheric dynamics context by Smagorinsky (1963), and further
developed and applied when the availability of computers made numerical
computations feasible, it is not useless to remark that spatial averages ap-
plied to turbulence where first used by Reynolds in his works on pipe flows.
Applications to turbulence are posted to the next sections. Here we shall
briefly introduce the concept of spatial average and discuss its relation with
angular momentum balance, together with some useful properties.

A simple spatial average may be defined in the following way: on a class
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of sets defined by
Is={n e R*:|| n <}

we define an average operator < - >; as

<5 (xt) = % || fec oy (13)

where Vj is the volume of Z5 !.
In large eddy simulation, spatial averages are normally defined as a con-
volution integral,

<f2o= [ 19y =x:0)dx, (14)

where function g(x;d) is a weight function, which implicitly defines the
length scale ¢ of the average, even if a compact support is not required, and
are often referred to as filtering ( Germano (1992)). It is normally chosen
with spherical symmetry, that is g(x) = g(||x|| ¢). This definition is the more
general definition of a continuous space average operator. Let us consider
any continuous linear operator M : Xq — Xgq, where {2 denotes here the
flow domain and X is a dense subset of L?(f2), which associates to each
function f(x) its correspondent averaged function (M[f])(x) =<f> (x).
We want to show that it may be written in the form (1.4). Let us fix x and
consider the linear functional Ay : Xo — IR,

Al = (M) (%) =<f> (%),

that is, Ax associates to each function f the value in x of the averaged
function. Because of the linearity and continuity of Ay, there is an unique
function ¢ such that

Mlf] = (Flgx)
that is
<f> (x) = /Q f(y)6(y: x)dy

where we have evidentiate the x-dependence of function g. If M is a
smoothing operator, we require that it preserves constant functions and
that it is invariant to space translations, that is, h(x) = f(x + o) implies
<h> (x) =<f> (x + o) for all vectors o. The latter condition leads to

(b(y - U;X) = ¢(y;x+ U) Vx,y,o (15)

"When it does not create any trouble, index § will be often omitted in averaged variables
like <f>5
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that is obviously satisfied by ¢(y;x) = g(x —y). It may be deduced with
some further hyphotesis of regularity for ¢: deriving with respect to o; and
then putting o = 0, we have the wave equations

9 )
—8$j¢(y,><)+8yj¢(y,><) 0 Vj=1,2,3

whose general solution is ¢(y,x) = g(x —y). Moreover constant function
invariance leads to the normalization condition

[ gty =1

Such spatial averages satisfy most of the properties that are required to
an average operator in order to be a feasible instrument (Germano (1992)):
it is linear and commutes with all partial derivatives. This last property
may be easily verified by direct substitution in (1.4) if f and g are at least
piecewise C! functions. It remains true also under weaker hypothesis, as
it may be seen exploiting the continuity of the average operator or using,
for example, the Fourier transform properties. It is well known (Rudin
(1974)) that if ik:jf and ik;§ belong to L', then f and g are derivable and
5;}‘ = z'kzjf, 5;5 = 1k;g. So, using also that f/;k\g = fg, we have

— ~ ~

;) g = (ik; /) = ik;(f§) = ik; [+ g = 9;(f * 9)
This definition comprehends (1.3) if g is chosen as

05(¥) = 2 xz,(¥)

Vs
where in general x4 is the characteristic function of the set A, equal to 1
within A and equal to zero otherwise.

From a theoretical point of view it has been considered worthwhile to
consider linear average operators that, even if not continuous, have the prop-
erty of being easily invertible, in order to reconstruct f from its average
< f > (Germano (1992)). This lead to the introduction of the so called
differential averages, in which the weight function is chosen as the Green
function of a given differential operator. In any case, it will turn to be use-
ful to consider how obtain, at least formally, function f from < f>. The
approach developed here, and which will be used in following discussions, is
based on power series developments. The only smoothness requirement is
that f, and consequently < f>, be analytical. All the calculations will be
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carried out for definition (1.3) instead of the more general (1.4), but results
may be easily transferred with only few modifications.

The first step is to expand < f > as function of f. With the above
hypothesis, we expand the integrand f in (1.3),

<Prsbt) = [ S (Z) @ PR ccnkorh B0k f(x, t)dx

1y k 05=0
(1.6)
If § is smaller than the radius of convergence of the power series of f, the
convergence is then uniform within /5 and we may perform integration term
by term (Rudin (1974)). The result is

oo 5211 n k o i o i 2n—3) nj 2(k—3)
<o) =3 g > dhod g2 g g2 ) p ()
'k 05=0 (2n — 2k)1(27)!(2k — 29)!

(1.7)
where we have defined
1 o 20 ~2
Ao, By = 71 /Il C% CzﬁggydC (1.8)

Owning to the symmetry of Zs, coefficients a, g, are invariants to all per-
mutations of indexes «, (3, v; moreover, they depend only on the shape of
the class of sets Zs. This expression may be made compact if the following
linear differential operators are defined:

n

1
_W)'Z

" k=03=0

An—Fk,j,k—j 2(n ) 2(k—3)
(2n — 26)1(2))! (2% — 2! %0, (19)

]

so that
<f>s5 (x,t) 252%4 )] (1.10)

Our aim is to write f in term of <f> as a power series inverting (1.10). We

start writing
o0

Foet) = 3 " Bul<f>s (x)] (1.11)
m=0
where {B,,} is a succession of differential operators to be determined. Then
we introduce this expression into (1.10). From the constantness of ¢ and the
commutation of A,, and B,,, employing the regularity property stated for
f, we get

10
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<fo5= 3 0" A Bj[<f>4]

n=0 7=0

(1.12)

Equating all powers of § on the left and right hand side the following se-

quence of operator equations is obtained:

AoBo =1

> An_jBj=0
j=0

where I is the identity operator. Observing from (1.9) that Ag = I, we get

By = I (1.13)
ne
B, = —)Y A, ;B (1.14)
From (1.9) we have
1
A = ZagaV?
2
a
Ay = = |: 0022844—&01128‘8;]
i#j
a
Az = [ o0 Z + 0’1’2 > oo) +a1,1,13%3§8§]
G
and the first few terms are explicitely given by
1 2
B, = —A1=—§a0,0,1V
1
By — Ayt A =1 [%01 aooﬂ 284 1 [agm a0,1,1:| S o202
i#j
By = —A3+24A +A3:1[3 3 ‘“”O’ﬂzau
ST TR R N0 T gT00T002 T Ty [ £

3 1 a
+ 3 0,1,2 9
[gao,o,l =+ ap,0,100,1,1 + 6a0,071a070,2 — E a o} +
i#j

11
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1 a
3 1,1,1 202 02
+3 6ap 0,1 + 3a0,0,100,1,1 — G 010505

These properties will be used in the forecoming discussion of sections 2.3
and 2.4.

2.2 Averaged fields balance equations

Balance equations for averaged flow variables are obtained applying the
average operator to balance equation for unfiltered fields, taking advantage
from the linearity and commutative properties. Continuity and momentum
balance equations give

Oy <p> +0; <pu;> = 0 (1.15)
O <pu;> +8j <puju;> = —0; <p> +8j <T;j> (1.16)

that for the special case of incompressible homogeneous flows, which we are
primary concerned with, take the form

O; <u;> = 0 (1.17)
p(Or <ui> +0; <uwju;>) = —0; <p> +0; <Ti;>, (1.18)

the latter of which is normally rewritten as
Oy <u;i> +0j(<up><uj>) = —p 19 <p> +v 05; <u;> +9;Ri;,  (1.19)

where R;; =<wu;><wu;> — <u;u;> are the Reynolds ”subgrid” stresses,
which represent the effect of momentum flows of scale smaller than ¢ in the
averaged budget. These equations are considered in turbulent flow applica-
tions, to evidentiate the greatest scales of the flow. An angular momentum
equation arises naturally in a space averaged description, in which the bal-
ances on finite dimension systems are considered. The angular momentum
of a general mechanical system consists, from the Konig’s theorem, of two
contributions, the first one coming from the collective motion of the system
as a whole, the second one coming from the internal relative motions of the
system. The first one is simply the moment of the momentum of the centre
of mass, so that it does not contain any further information, while the latter
is computable subtracting from the total angular momentum the moment
of first one. With reference to incompressible fluids, the intrinsic angular
momentum per unit mass is

h; = Eigk(<Iguk> — <.’Eg><uk>) (1.20)

12
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An evolutive equation for h; may be likewise obtained from momentum
equation taking the difference between the average of the angular momentum
equation and the momentum of the averaged momentum equation, thus
obtaining

Oehi + 0;(hi <uj>) = 0;Cij + 0;Myj + i (1.21)
where
Cij = eim[(Szoup> — <z><up>) <uj> —(<vpupu;> — <ze><ugu;>)]
My = eug[<eiTh> — <we><Ti>]

Tensor Cjjis the angular momentum flow due to macroscopic motions, and
comprehends either “turbulent transport” due to small scale eddies either
the transfer due to the stretching, while M;; is the flow due to molecular
transport.

2.8 Angular momentum and vorticity

We consider the relationship between angular momentum and vorticity and
between their balance equations. It is usually assumed that vorticity repre-
sents the angular velocity of a small volume of fluid and its balance equation
is derived taking the curl of the momentum balance equation. Nigmatulin
& Nikolaevskii (1970) and Chatwin (1973) showed the proportionality, at a
first order approximation in the square of the linear dimension of a small
fluid volume, of vorticity and angular momentum, and then between the
vorticity equation and the angular momentum equation.

The limiting assumptions were incompressibility and the use of a first
order spatial approximation that may not be appropriate when material
elements are considered because of the great deformations which all fluid
elements may undergo. We expand the intrinsic angular momentum by
means of a power series of the linear dimension § carried out at the general
order m. A result associated to the availability of this infinite expansion is
the representation of the balance of the intrinsic momentum as an infinite
sequence of differential equations acting on the momentum, the first of which
coincides with the vorticity balance, i.e. the Helmoltz equation.

Based on definition (1.3 or 1.4), we define a mean intrinsic moment
operator M, acting on a vector field f, as

(Mf); = ei(< o fr > — < >< fr >) (1.22)

13
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or also, substituting the explicit definition of the mean,
1
(Mf); = Eiékv/ nef (x +m,t)dn (1.23)
6 JIs

In the same hypothesis of (1.10), expanding M in a power series of 62 or
through substitution of (1.11) into (1.22), we get:

i §2m+2 )
M = m, (1.24)
o 0 (2m +2)!
where
oy —szz< )( : )am tij 4105 T2 g2lm=h)
i S\ 2t+1 ) 25 +1

Coefficients a, g, are given by (1.8). Here the index p is the integer remain-
der of (¢ + 1)/3, while index ¢ is the integer remainder of (¢ 4 2)/3 so that
¢,p,q are a permutation of 1,2,3. To deduce (1.24) we take advantage of the
simmetry of Zs.

The mean intrinsic angular momentum per unit mass h of each element Z;
is defined as <p> h = M(pu). Relations (1.24) yield to

1 e puy 1( 1 \&
h; = §a0,0,15i€k%52 + - {_Zag,O,IEiékaé(puk)Tp"’_

1
4' 3a0 1, 1V Ezekag(puk) + (a070,2 — 3a071,1)€igka?(puk)} } (54 + 0(56)(1.25)

that may be written also in terms of averaged quantities, from (1.11), as

1 Op <p><up>
h‘ = —Q, E; —62
) 2 0,0,1¢ilk <p>

1 (1
<p> {I {3(‘10,1,1 — 20,0.1) Veirdp(<p><ur>)+

+(ao0,2 — 3ao,1,1)~€z'ek3§’(<p><uk>)} +
1

—Za0,071€¢gkag(as <p> 0O <uk>)} 5 + 0(56) (1.26)

For compressible flows, the mean intrinsic angular momentum may not be
proportional, however small is §, to the vorticity or to the mean vorticity
field, because of the inequal distribution of mass in the volume. The angular

14



1.2. Angular momentum in space averaged flows

momentum balance equation (1.21) was obtained applying the operator M
to the momentum budget

fe(x,t) = O(puk) + 9 (pugu;) — 0;Tk; — pby

where T is the stress tensor and b is an external force field, and we might
expand it term by term, but it is more convenient to apply directly the
expansion of operator M to the momentum budget. Assuming again an
analitic behaviour, with positive radius of convergence, for the solutions of
the Navier-Stokes equations, and equating to zero all the coefficients of the
series (1.24), one gets C™f = 0, Vm € IN, that reduces to

i 07" fr(x,t) =0 YmeIN, i=1,23

as it can be demonstrated by induction. In fact equations C"f = 0 may

be rewritten as
m

(Cmf), = Zp(j)[ewkagjﬂfk]
=0

where DU) are linear differential operators, of which DY) is the identity
operator. Free of any approximation the angular momentum balance leads
us to a sequence of differential equations that, by the induction process, are
not reducible one to the other, the first of which is the vorticity equation.

The higher order equations are obtained applying the operators H Z(,T ) =
siekagmﬂ that show a structure analog to 'higher order’ curls and may be
considered balances for higher order vorticities. This result is quite general
because is not restricted by the particular nature of the constitutive equa-
tion as long as this last describes the fluid, even if with internal structure,
as a fluid with bulk properties. It might turn useful in turbulence appli-
cations where auxiliar equations are always needed as consequence of the
introduction of correlation variables associated to the closure of the filtered
problem.

2.4  Variable filter width

In many circustances it is useful to consider a ligthly different average pro-
cedure, in which a variable filter width is allowed. This happens when a
material boundary on the flow domain is to be taken in account. In fact,
even if the centre of the averaging domain lies in the flow domain but its
distance to the boundary is less than §, the averaged field carries an uncor-
rect information. For example, the averaged velocity is not zero at a rigid

15
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wall. Furthermore, near the boundaries the model employed for nonlinear
convective terms is no more valid because turbulent scales are different from
far from walls. Then, (1.10) is replaced by

<f> (x,0) = Vil /L Flx+ 8(x)C, t)dn (1.27)

and (1.4) undergoes analogous modifications. However, when a variable filter
width is allowed, one has to face with some additional problems in deriv-
ing balance equations for averaged quantities, the most important af which
is the lost of the commutability property between filtering and differenti-
ation, which prevents straigthforward application of filtering on equations.
This loss of commutability is enterely related to the spatial modulation of a
variable filter width.

The problem of the non commutability of the filtering operation has
been already considered by Ghosal & Moin (1995) by introducing an al-
ternative definition of the filtering builded on the mapping function of the
non uniform grid. Their idea was to transform the physical domain in an
unbounded domain on which standard space averaging with constant J is
applied. In this way the commutation error was shown to be of the second
order in the maximum filter width. To cope with the commutation error
they proposed also the adoption of an asymptotic expansion in the square
of the filter width, up to any order of accuracy, where the coefficients of each
term depend on the filtered field and its space derivatives. A procedure of
this kind would be necessarily adopted in case of numerical schemes based
on higher order finite differencing or pseudo-spectral methods. However,
to obtain the correction, it requires the solution of additional non homo-
geneous perturbative problems containing higher orders derivatives of the
basic solution. Furthermore, when translated back to physical domain, their
procedure define an asymmetric average domain.

We prefer to work directly on physical space without any reference to any
numerical discretization scheme. The method we propose is to approximate
relationship (1.31). In this way the error is reduced without the need to
iteratively solve other equations.

When the filter scale is function of the point, the relation between the
space derivative of any filtered physical quantity and the filter of the deriv-
ative of the same quantity is

1 0
o<t o= | a;: (x + 5(x)¢)dC + (1.28)

16



1.2. Angular momentum in space averaged flows

95 1 of
3332'(}{)71 Zlgj
of _ o
833‘2' 9 8.1‘Z

(x +0(x)¢)¢;d¢ =

< < Vxf€ >5 (1.29)

This relationship may be contracted if one ascertains that

0 _1 [ of .
55 <[ >o= 7 )y, a2 (x + 6(x)€)¢;dC (1.30)

The result is a relation where the filter of the derivative is a differential
operator acting on the filtered field:

of 9 85 9

oz, >5= oz, < f>5 ~ 95,96 < f>5 (1.31)

<

As a first attempt, this problem could be faced adopting a truncated
series expansion of < f > in terms of powers of §. In fact, from (1.10), we
can write

% <f>=20A1[f] 4 403 As[f] + O(8°)

up to the desidered order of accuracy, with operators A; specified by (1.9).
The following step is to write substitute the expansion of f in terms of
<f>. Special attention must be reserved in using expression (1.11), which
was deducted in the hypothesis of constant 6. Anyway, the first order is not
affected by this problem and it is easily found

% <f>=20A1[<f>]+O(6°) (1.32)

Introducing (1.32) into (1.31) and substituting §(x) = A¢(x) one would re-
cover the result by Ghosal & Moin (1995) about second order error when non
commutability is neglected and furthermore has a procedure to approximate
it. Even if this might be extended to any order of accuracy, it present the
disvantage of increasing the order of the equations, requiring consequently
additional boundary conditions. We proposed then a different treatment
based on numerical approximation of the é-first derivative in conjunction
with truncated expansions. Let us write the second order finite difference
approximation

0 1
7<8](; > = ﬁ ( f >5+h - < f >5—h) + O(h2) (133)
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Chapter 1. Angular momentum and symmetry

We choose h = § and express < f >o5 and < f >¢= f in terms of < f >;.
By means of (1.10) we have

1
f=<f>s —§a070,152v2f + 0(6")
Averaging again on a volume of linear dimensions 29, and observing from
(1.10) and (1.11) that the difference between < §2V2f >o5 and §2V2f is
O(8*), we obtain

< f >os=<< [ >5>05 —a0,010°V2f + O(5Y)

Introducing < f >95 and f in (1.33), we finally get

% = % (<< f >5>05 — < [ >5) +O(6%) = Hs(< f>) + O(8?).
(1.34)
When approximation (1.34) is used, equation (1.31) will be affected by a
third order error. This procedure should then turn useful in numerical com-
putations with at least a third order numerical scheme when integrating the
resulting equations. In the equation of (1.19) this leads to the substitution
of @-Rij with
OjR;; + (8j5)H5(< u; >< uj > —Rij)

and of 0; < p > with 9; < p > —(0;0)Hs(< p >). In an analogous way
additional terms in the angular momentum equation (1.21) are introduced.
An approximation of the error on order second derivatives is also needed.

3. Structured flows

3.1  Granular flows

A major system in which the angular momentum balance comes strongly and
indipendently into the dynamics is the case of granular flows. A granular
flow may be regarded as the motion of an heterogeneous medium of the type
gas-solid particles, without phase transition, when the phase density ratio
has the limiting value of zero. Examples are the rapid motion of ice grains
freely flying between successive binary collisions met in planetary rings, see
for instance Araki & Tremaine (1986), Wisdom & Tremaine (1988), Frezzotti
(1998), and fluidized regimes of rough particles, see Cercignani & Lampis
(1988), Goldshtein & Shapiro (1995).

The starting point is a kinetic model, first developed by Enskog in the
context of dense gases. In the classical Boltzmann theory, the assumption of
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1.3. Structured flows

negligible small molecular volume in comparison with the volume occupied
by the whole gas is made. With this Ansatz molecules are consequently con-
sidered as material points and have then only translational degrees of free-
dom. In granular systems this assumption is abandoned, and it is necessary
to introduce new variables which describe the internal degrees of freedom.
The simplest case is that of rigid spheres whose mass center coincides with
the geometrical centre and whose inertia momenta tensor is isotropic. This
representation owns the advantage that no variable is explicitly required
to specify the orientation of grains in space, and so only three vector vari-
ables, namely the position x of the centre, the velocity u of the centre and
the angular velocity €2, are sufficient the dynamical status of each grain.
Interaction between grains are limited to binary collisions. Three are the
fundamental differences with the kinetic theory by Boltzmann, primary due
to finite dimensions of grains: the centre of the molecules are not assumed
to coincide at a collision, but they are at a distance of a sphere diameter;
although multiple collisions are not considered, the closeness of other mole-
cules produces a modification in the collision rate, such that the two-particle
distribution function is no more equal to the product of one -particle dis-
tribution. Finally, inelasticity and roughness of grains are considered in
collisions.

These hypothesis led to the Enskog’s equation for the particle distri-
bution function f(¢,x,u, ) that probabilistically describes the collective
motion (Cercignani & Lampis (1988)),

of , 0F  F0f M Of

where m and I are mass and momentum of inertia of grain while F; and M;
are the external force and momentum acting on them. The collision operator
JE is defined as (Cercignani & Lampis (1988), Goldshtein & Shapiro (1995))

JE(fa f) = (12/ @(E : 1112)[92(X,X - as)f(x, 11*, Q*>t)f(x - aE,ll;, Q;at)
—g2(x,x + ag) f(x,u1, Q,t) f(x + ae, uz, o, t)|(£ - ulg)dungngE. (1.36)

Here O is the Heaviside function, gs is the equilibrium pair correlation func-
tion, whose expression may be read in Cercignani & Lampis (1988), € is
the versor of the direction connecting the centres of the two colliding grains,
u;2 = u; —uy and variables with a star are the initial velocities and angular
velocities leading to final velocities and angular velocities u, €2, ug, €29 after
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Chapter 1. Angular momentum and symmetry

the collision. They are obtained from the collision relations, which are ob-
tained from the conservation of momentum and angular momentum in each
collision the collision model (Frezzotti (1998))

ur = —e(e-up)e — f(u — (e-up)e),

where ug is the relative velocity in the impact point and e and (3 are the
restitution and roughness factors; they take the form (Frezzotti (1998))

u = ut S e + g (- (e
w = ut S euie + g (- (e
© = _a(ll—i:kﬂk)(E/\u*R)
Q, - m-%(mu})

where k = 4.J/a?. Parameter e affects only the final normal velocities, while
parameter 3 affects tangential velocities and angular velocities. Value of
e = 1 corresponds to elastic collisions while 3 = —1 correspond to smooth
collisions with no angular velocity exchange.

Macroscopic field variables are straightforward defined as

[ pfdud$
~ [ fdudQ

<l

where the denominator is the numerical density n of particles. Balance
equations for granular flows are obtained multiplying the Enskog equation
(1.35) for the physical quantity ¢ and averaging

o 0 . ' dp ' Op ' Op
8t(ngp) + oz, (nou;) = fuj—amj —I—fFJ—auj —I—fM]—an +nlAyp (1.37)
where

Ay = / oJp(f, f)dude

The most interesting result is that, even if ¢ is a collisional invariant, that
is a quantity that is conserved in collisions, and thus satisfies

(p(ul27 9/2) - (,0(1127 92) = —[cp(u’, Q/) - (,O(U., Q)]
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1.3. Structured flows

(collisional invariants are mass, momentum and total angular momentum),
nAgy is not zero if ¢ is not constant. This implies that, except the con-
tinuity equation, which remains unchanged, the momentum and angular
momentum equations will contain additional flow contributions arising from
interactions at distance due to the finite dimensions of the colliding grains.
The momentum balance equation is obtained putting ¢ = mu;; the stress

tensor is now found to be Tj; = TZ’; + T¢, where (Cercignani & Lampis

K

(1988))
T’z]; = —m/(ul — ﬂl)(’u,] — ﬂ])fdudQ
ma? a
TS = T//o (i — ul)e;0(e-uz)ga(x + (a — a)e, x)

X f(x+ (a—a)e,u,Q)f(x+ ae,ug, Q2)dadudQdusds.

Here superscript k& denotes the “kinetic” contribution and superscript ¢ de-
notes the collisional contribution. One of the most relevant feature is that
now 77 is not symmetric in general unless spheres are smooth, in which case
collisions affect only the normal component of the relative velocity.

When the same reasoning is applied to the total angular momentum,
that is ¢ = gyppxour + mJQ;, we have equation

at(pjﬁi) + 8j(pjﬁmj) = pﬁi—i- Eijijck + +8jKZ-j (1.38)

after having subtracted the moment of momentum equation, where € is
the mean angular velocity of the grains and K;; = szj + Kj; the angular
momentum flow, given by

KE = —mJ / Qi(u; — ;) fdud®

. ma2 a . N
Kij = =% //0 gigjenl(a — a)eg(uj — uj) + J(Q; — Q5)](e-u12)
C—)(E'UIQ)QQ(X + (Oé - CL)EI, x)f(x + (a - CL)E,', u, Q)
f(x+ ag,uy, Q)dadudQduyd€s.

In this way momentum and angular momentum are naturally coupled, be-
cause rough collisions are non central interactions at distance that couples
the changes of velocity and angular velocity.

This would be clearly visible if constitutive equations were developed.
Even if the existence of an hydrodynamic stage for the evolution of granular
systems is not proved, approximate moment methods (Araki & Tremaine
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Chapter 1. Angular momentum and symmetry

(1986)) and Chapman-Enskog expansions ( Goldshtein & Shapiro (1995))
have been used to derive them, resulting in a different evaluation of the
partition of the kinetic energy between rotational and translational modes.
Goldshtein & Shapiro (1995) have shown that inelasticity has the capability
to shift the partition of the kinetic energy in favour of the rotational modes.
The particle spin is an important feature of the distribution function and
it must not be generally neglected when deriving the evolutive equations
at the macroscopic level. When grains are rough and extended, or when
the interaction among grains is not only limited to collisions because of
the presence of long range gravitational interaction or externally imposed
forces and torques, the difference between instantaneous and mean particles
spins must be accounted for. For simplicity the average spin was always
assumed equal to the mean vorticity by both Araki & Tremaine (1986) and
Goldshtein & Shapiro (1995). This may not be exactly true. It has been
found a relative difference between mean angular spin and average vorticity
of about 70% both in Salo (1995), by means of the molecular dynamics of
grains in presence of the mutual gravitational interaction, and in Frezzotti
(1998), through linearized Enskog theory applied to rough and inelastic ele-
ments. The leading order of equations obtained from the Chapman-Enskog
expansion is constituted by non-diffusive Euler-like equations, while in the
second order the distribution function is a quasi-linear function of the hy-
drodynamic dependent variables, that in the general case comprehend also
Q. As a consequence, at this order, the angular momentum balance results
explicitely coupled to the balance of mass, momentum and energy. Instead
at the first order (Euler-like equations) the diffusive flow is zero and the
mean particle spin €2; remains constant on each particle path. In both cases
it cannot be replaced by the vorticity of the mean flow which undergo a
different dynamics, as it is remarked by the absence in (1.38) of a stretching
term even in tridimensional configurations of motion.

3.2 Biphase flows

When dealing with suspensions the main purpose is the description of global
large-scale behaviour. Different ways were proposed, depending on the par-
ticular problem and on the goal of the analysis.

When the density ratio between the two phases is equal or near to unity,
it is possible to macroscopically describe the system as an homogenous equiv-
alent fictitious continuum. Batchelor (1970) and Brenner (1970) deduce the
system of equations governing the averaged field variables relevant to each
phase. A second approach adopts a continuum mechanics point of view
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1.3. Structured flows

for the global system introducing ad hoc postulates that should reproduce
the key features of the influence of the dispersed phase on the whole sys-
tem (for example, see Almog & Brenner (1999), Dahler & Scriven (1963),
Eringen (1966) and Ungarisch (1999)). In this case, no explicit average is
performed, and the variables are supposed to represent quanties averaged
on a somewhat smaller scale (micropolar element, see for instance Eringen,
1966). The aim of both methods is then to fit the global mechanics of the
biphase system in an hypothetical fictitious equivalent medium.

A suspension is a system which is defined essentially in a statistical sense
inasmuch as the exact location and velocity of the particles is different for
different realizations of the same macroscopic conditions. The natural ap-
proach is based on ensemble averages, in a way similar to that employed
for granular flows, with the major difference that interactions between sus-
pended elements are not due to collisions but to the hydrodynamic inter-
action with the surrounding fluid flow. Ensemble averages are not easy to
be obtained or observed, so it is necessary to consider other average proce-
dures, like the volume averages discussed in section 2.1. This leads to same
results under the assumption that the suspension is locally statistically ho-
mogeneous Batchelor (1970). The angular momentum balance comes into
the analysis of the dynamics of suspensions in presence of external forces
and couples acting selectively on the suspended particles. The contribution
of the dispersed phase on the volume averaged momentum flow tensor is:

% v odx = %/8\/0 okxjnpdo — %/Vo xjOpo1dX,
with Vo = U, Vo, where V,, is the volume occupied by each particle, and the
first term on the right hand side is the moment exerted by the fluid on the
suspended particles. If each particle is assumed to behave like a dipole due to
the presence of a body-force field acting selectively only on the particle and
one subtracts from the stress tensor an equivalent hydrostatic field, capable
to balance the external body-force (Batchelor, 1970), one would find:

pa; = 0;oij,
where a; is the local acceleration relative to the averaged global one, and

5ijk/ Pajﬂfkda—é‘ijk/ ourpnedo = 3 = €z‘jk/ odx
OV WV Ve

[eY

When substituted back in the momentum flow equation, the excess external
moment M leads to a skew-symmetric part of the momentum flow 3J;; equal
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Chapter 1. Angular momentum and symmetry

to the mean external angular moment per unit volume, €;;,%,, = >, 57/V,
that will depend also on the particle concentration and orientation. Exter-
nally imposed couples on particles might be caused by electric or magnetic
fields on particles of ferromagnetic alloys. Batchelor (1970) then develops
“constitutive equations” for suspensions in the hypothesis of equal density
of the two phases and low concentration, a case in which it is possible to
compute an estimate of the moment flow due to particle motions, that would
lead, in the case of force-free and torque-free spheres, to Einstein’s formula.
Similar results are presented also by Brenner (1970).

3.8 Micropolar flows

A continuum theory in which angular momentum has a central role is that
of the so called “micropolar fluids” by Eringen (1966) or of the equivalent
“structured continua” by Dahler & Scriven (1963). These authors rely on
the idea that “fluid points contained in a small volume element may have a
motion different by that of the centroid of the volume element”? in which
they are embedded, and in particular they may rotate around it. In this
theory the fluid medium is depicted as a dense collection of simple material
systems, the microelelements, owning momentum, intrinsic angular momen-
tum and energy. The kinematics of the motion of each microelemnt is fully
described by the velocity w;(x,t) of its centroid and by a second order tensor
vi;j(x,t), called by Eringen microgyration tensor, which portraits the inter-
nal deformation and rotation of the element. In the most simple version of
this model, this tensor is skew-symmetric, thus leading to a collective motion
of pure rotation of each element. It is supposed that “certain anisotropic
fluids, liquid crystals made up of dumbell molecules”, “animal blood” and
”certain polymeric fluids and fluids containing certain additives may be rep-
resented by the mathematical model underlying micropolar fluids”3. In this
way, this idea leads to the existence of an intrinsic angular momentum field
hi = €imnimpVpn, Where iy, is the microinertia tensor, related to the geo-
metrical properties of the microelements, representing the dynamical effects
of the micropolar elements motion. The introduction of this tensor implies
a non trivial balance equation for the intrinsic angular momentum which
is directly coupled to the linear momentum balance through the onset of a
new skew-symmetric part of the macroscopic stress tensor. The momentum
and intrinsic angular momentum balance equations may be written, see for

2See Eringen, 1966, pag.1.
3ibidem, pag.1.
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example Lukaszewicz (1999), as

p(@tui + ujﬁjui) = 8jTij + pb; (1.39)
p(athz‘ + Ujajhi) = 5ijijkz + 8jKZ-j + G; (1.40)

where h; is the intrinsic angular momentum, (; the mean torque per unit
volume, T;; and Kj;; are the now non-symmetric tensors of the flow of mo-
mentum and angular momentum. Equation (1.40) is obtained in the same
way as (1.2) is derived from (1.1), only balance (1.1) is now substituted by

d

— iR h))dx =
i /A(t)(ejkz]puk+p )dx

= / (Eijkijkmnm + Kl-jnj)da + / (Eijkxjpbk + Bz)dx (1.41)
OA(t) A(t)

Referring to applications to suspensions, it was recently recognized that the
asymmetric stress tensor implied by (1.40) has normally no counterpart in
an equivalent averaging approach (Almog & Brenner (1999)), even if it is
a quite natural result of a postulated continuum approach for the averaged
equivalent monophase continuum.

The intrinsic angular momentum is an extensive quantity, linked to the
spatial extention of material systems, and vanishes when the dimension of
the system reduces to zero. In this model the properties of finite size el-
ements, containing fluid and particles, are then associated to discretized
entities (the micropolar local elements) deprived of finite dimensions. This
introduces, in our opinion, the main difficulty of the model because the
properties of the micropolar elements are not obtained through a limiting
process with regard to the ratio between their characteristic linear dimen-
sion and a macroscale length. This is a central feature for the possible
application of this model. Almog & Brenner (1999) wrote: “the necessity
of an antisymmetric stress arises from the fact that the couple generated
by a symmetric stress tensor acting over a surface bounding an arbitrary
(small) volume vanishes identically”, however this happens only when the
stress components are forced to act on a same point because the volume has
been considered infinitesimal.

Most applications of the micropolar fluid model deal with the mathemat-
ical properties of equations (1.39-1.40) with linear constitutive equations for
tensors T;; and Kj;; in terms of gradients of velocity and angular momen-
tum, or tend to solve them on standard situations, like pipe flows, boundary
flows and so on to remark differences with the corresponding solutions of
the Navier-Stokes equations. Notwithstanding many of the authors think
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to suspensions as the natural application, and Brenner (1970), Almog &
Brenner (1999) try to match the two situations, it is evident, either from its
formulation or from the resulting equations, that it might be well suited not
for systems constituted by fluids “containing structures” (solutions) but for
fluids constituted by “structures” on a subcontinuum scale, such as gran-
ular flows, that might be the most natural application. In effect Dahler
& Scriven (1963), Condiff & Dahler (1964) explicitely wrote that micropo-
lar effects arise in the presence of extended subcontinuum entities with non
central interactions, and as example stated dense gases.

The comparison by Tozeren & Skalak (1977) between semiempirical
models for wall flows calibrated on experimental results enlightens the dif-
ficulties of this kind of model in reproducing simple shear flows of a dilute
suspension of rigid spheres in water (with o = 1). Notwithstanding the flex-
ibility given by the different boundary conditions that may be associated to
the micropolar model equations, this last was found not able to reproduce
at the same time both particle rotations and mean velocity near the wall
for a Couette flow of a dilute suspension of rigid spheres. The disagreement
may be referred to the impossibility for the micropolar model to account for
variations of the suspension properties due to the concentration variations,
a field variable that is completely absent in this theory.

4. Angular momentum past applications in turbulence

4.1 Early applications of angular momentum in turbulence by Mattioli

Space averaged equations were used from the very beginning in the analysis
of turbulent flows, starting from the early works by Reynolds (1895), even
if he did not pose himself the problem of closure neither attempted to solve
them. Even if intensive use of spatial filtering begins with large eddy sim-
ulation with Smagorinsky (1963) and became a standard tool for turbulent
flow simulations many years later, balances over finite volumes to evidence
the larger scales of turbulence where already considered by many authors
(Mattioli (1933), Nigmatulin & Nikolaevsky (1970), Ferrari (1972), Eringen
(1972)).

In connection with this approach, it was felt worthwhile to consider the
angular momentum of the fluid volume in which averages were taken.

Since the earliest Mattioli’s application in 1933, the equation of angular
momentum balance has been applied few times to discuss the behaviour of
turbulent flows. The approaches then differentiated.

Anyhow, the key point of these theories is the coupling between the

26



1.4. Angular momentum past applications in turbulence

momentum and the moment of momentum equations. In all of them the
distribution of the mean velocities depends upon the motion of internal
rotation, considered as the structural property of the elemental volume cells.
The mathematical coupling between the two kinematical aspects is due to
the presence of the antisymmetric part of the turbulent stress tensor in both
the equations of momentum and angular momentum.

This feature is explicitly declared in Mattioli, it has been renewed by
Ferrari and Nicolaevskii, but it is also a necessary element in the model by
FEringen. All these theories seem capable to reproduce experimental results
about turbulent sheared flows. In spite of this, their common and decisive
component - the coupling between the momentum and angular momentum
equations through an antisymmetric part of the stress tensor - is an arbitrary
choice, whose validity in the case of homogenous fluid may be proved false.

The first of these works that use angular momentum in turbulence ap-
plications are those by Mattioli (1933, 1937), who considered balances over
finite fluid elements, and introduced the possibility of a non symmetric stress
tensor. His fundamental idea is to deduce from the principles of mechanics
the equations for the largest scales of turbulence, if only one relinquishes to
describe the details of the fluid motion, likewise to the approach of classical
continuum mechanics, in which molecular motions are not considered; field
variables that macroscopically describe the collective motion are introduced
and balance equations for them are derived directly from general principles
of physics.

In this end, he introduces, apart from density and velocity, an additional
vector field h apt to represent the intrinsic angular momentum of each vol-
ume. Then, he founds, other than the continuity equation, equations

D; <u;> = 0;Ti; + 8jrfj + 8]-75]- (1.42)
Dihi = ey + 0;Cij + 0;Kij, (1.43)

the second of which is obtained in the same way as (1.2) when in (1.1)
ik Tepuy, is replaced by e;pxopur, + ph;. Here 7;; is the flow of momentum
due to smaller scale turbulent fluctuations, which in (1.42-1.43) is decom-
posed in its symmetric and antisymmetric parts for sake of clearness, and
analogously K;; and Cj; are the angular momentum flows due to molecular
and turbulent transport. The most evident feature of its set of equations is
the presence of 77, on which were addressed the criticism of its contempo-
rary. However, he does not suppose, a priori, that the flow of momentum
is not symmetric, but he “deduces” this property from equation (1.43). In
fact, being in general h; not constant, unlike (1.2), €0,7f}, cannot be zero.
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Correctly deduced equation for angular momentum (1.21), starting from the
Navier-Stokes equations, does not contain a such term.

The incongruence of its conclusion and of the derivation of (1.43) lies his
assumptions on angular momentum balance, where he treats as point entity
with spatial extension.

In Mattioli’s theory the antisymmetric part of the turbulent stress is
assumed and interpreted as the momentum transport due to the vortical
structures of the small scales filtered out from the equation. A model is
then needed for this term. At this point, closure assumptions on 7;; and
C;j are introduced, primary based on modified Boussinesq hypothesis. He
also assume, not quite legitimately since dedicating an equation to it, that
the intrinsic angular momentum be proportional to the vorticity. With this
Ansatz equation (1.43) becomes thus an equation operating on vorticity,
but with a different structure than the original Helmoltz equation, because
of the presence of the term e;4,7f;, instead of the stretching term. In this
way one dependent variable is dropped out, and the additional equation is
eventually used as equation for the turbulent transport coefficient.

Mattioli’s theory was revised by Ferrari (1972), who justified and ex-
tended it on a phenomenological basis.

4.2 Nikolaevsky’s model

To a set of equations very similar to (1.42-1.43) arrived also Nikolaevsky
averaging the Navier-Stokes equations. He considered the balances of mass,
momentum, angular momentum and energy.

Nikolaevsky (1970) while computing the mean of the derivative intro-
duces an approximation of the second order in ¢ that induces the lost of the
commutative property between derivatives and filtering and consequently of
the property of symmetry of the averaged equation, where he obtains the
divergence of asymmetric tensors. In fact he uses the Gauss theorem to
transform the integral of the divergence in a surface integral. Then in rela-
tion to the cubic volumes adopted for averages he approximates incremental
ratios with derivatives:

<Oif>5 (%,1) = B[ f]) (%, 1) + O(62) (1.44)

where one must not sum up over the index in parenthesis and [f] ;) is defined
by

L (5[0
[fle) = (20)” /_6/_6f(x+77jej+77k:ek)d77jd77ka gk #i
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as the average of f on a plane whose normal lies in the i-direction. Niko-
laevsky neglects the terms O(62). So doing, together with the commutability,
he looses the symmetry of the tensors involved in the equations. In this way
Reynolds subgrid stresses are now

Rij =<u><uj> —[uzug) ;)

instead of (1.19) and own an antisymmetric part given by

1
B = 5 (lwiwgle) — [wingl )

that links the equations of momentum and angular momentum. However, it
it easy to see that it is of order O(6%) and arises enterely from approximation
(1.44).

4.8 Application of Eringen’s micropolar fluid model

In this context of applications of angular momentum balance in the analysis
of turbulent flows we have to recall the applications of the general microfluid
theory to turbulence, by Eringen (1972). Here the turbulent flows are con-
sidered simple microfluids independently from the presence of any physical
effect causing asymmetry. Since the microfuid theory already implies a vol-
ume averaged form of the equations, no further averaging is applied, and
microelements of Eringen’s theory (see chapter 1, §3.3) are identifyed with
small scale eddies. The motion of each micropolar element is then described
not only by the mean velocity u;(x,t) but also by the microgyration tensor
vi;j(x,t), that arise from the collective motion of deformation (its symmet-
ric part) and rotation (its skew-symmetric part) of the small scale eddies
represented by each microelement. The resulting system of equations is not
reducible to the filtered Navier-Stokes equations and, when linear constitu-
tive relations are introduced, comprehends up to twenty-three coefficients.
The intrinsic moment of momentum equation is coupled to the momentum
budget by the antisymmetric part of the stress tensor as in Mattioli and
Nikolaevsky. It may be seen that if the constrain of zero antisymmetric part
of the momentum flow tensor is used in his constitutive equations, the equa-
tions result uncoupled, leading to a mean velocity field independent from
the internal motions of the microelements described by tensor v;;(x,t).
The wide number of physical coefficients that this model introduces both
in the momentum and microgiration balances (1.39 and 1.40) by the linear
costitutive equations of this theory allows a flexibility sufficient to comply
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with the gross feature of the two-dymensional turbulent channel flow inves-
tigated (Eringen (1972)).

In the application to the two dimensional turbulent channel flow Eringen
gives a solution of his equations and the constant coefficients, which are now
only five thanks to the simple domain geometry, are adjusted according to
the experimental observation by Laufer (1951).

Furthermore, in a rather obscure way, a posteriori turbulent Reynolds
stresses are symmetric and identified as the average on a microelement of
the product of velocity fluctuations to respect to the microelement velocity
and then computed, coherently with the micropolar model kinematics, as

— Io — 5
Tkl = —PUU; = tmnVimVin

where i,,,, is the microinertia tensor and v;; is the skew-symmetric giration
tensor, defined in §3.3. However, this expression is different from that used
in the equations that are actually solved .
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Chapter 2

Angular momentum large
eddy model

1. Angular momentum Les model

From the discussion of previous chapter, it appears that equations coming
from spatial averaging of the Navier-Stokes equations always own symmetric
flow tensors and that angular momentum equation is not directly coupled to
the momentum equation. Applications of models and theories conceived for
structured flow to turbulence is then not justified. However, we shall show
that the behaviour of intrinsic angular momentum might be of interest in
the analysis of turbulent flows, and a large-eddy model based on it will be
proposed. This model will finally put forward a different coupling, that
does not require any asymmetry of turbulent flow tensors. Even if the
presentation will be focused on turbulent incompressible flows, it might be
useful also for structured flows (see chapter 1, §2), where an intrinsic angular
momentum arises and is coupled with the momentum balance equation.

We employ the Kolmogorov theory to evaluate the order of magnitude
of the angular momentum in the case of isotropic homogeneous turbulence.
We may write

1
h ~ (5_3/ r(6u),ridr
0

where (du), is the mean value of the difference between the velocity of two
points located at distance r (Frisch (1995)).

If a high Reynolds number is assumed, so that a great separation of
scales occurs, we may suppose that § is large enough to be in the inertial
range and the scales that appear in the integral are almost inertial. In this
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way we may use the Kolmogorov relationship between (du), and r (that is
(6u), ~ /3113, ¢ being the dissipation rate) for all the values of  smaller
than ¢, obtaining after integration the scaling law for angular momentum

h ~ 363 (2.1)

This result is also obtainable using the Landau-Lifshits observation about
the Loitsyanskij integral (see Yaglom & Monin (1975) or Landau & Lifshitz
(1983)). They note that the angular momentum H of a volume V' centered
in the origin, in the limit of V' — o0, is

HIZ
lim IE ] = 5v2mp2A
V—o0

where A is the Loitsyanskij integral
400 lo
A= / B (r)dr ~ / rd(6u)?dr ~ 1°F
0 0

where Bry is the longitudinal correlation, ¢ the integral scale and E the
turbulent kinetic energy. Then, for a volume of linear dimensions § < Iy we
can obtain the estimate

which is identical to (2.1), and where we have used
42 2513
A5:/ riuydr ~ 343
0

The same scaling was shown by Yoshizawa (1982),Ferziger (1985) and
Leaslie & Quarini (1979) to hold for the eddy viscosity. Effectively, Yoshizawa
(1982) showed starting from a statistical analysis that, if a great divergence
of scales is assumed, then the anisotropic part of the Reynolds ”subgrid”
tensor takes the form of an eddy viscosity multiplying the strain rate of the
mean field, with vs given by

Vs = ¢, 03¢5, ¢, ~ 0.053 (2.2)

This suggests a possible interesting usage of angular momentum in sub-
grid modelling: we may build a new differential model for the turbulent
stresses based on a Boussineq transport hypothesis for the anisotropic part
of the Reynolds subgrid stresses, in which the transport coefficient (the eddy
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D < U; > aRZ‘j .
momentum budget pressure | viscous term
Dt o%j
1 2 1 Re~!
additional terms 0 et g2 e?Re™!
D < hi > dCZ .
angular momentum budget pressure | viscous term
Dt 833‘7'
1 1, €2 0 Re!
additional terms 0 g2, &t 0 e?Re!

Table 2.1: Orders of magnitude of the different terms in the momentum and
in the angular momentum balance equation after a proper adimensionaliza-
tion, where ¢ = §/L and L is the reference length. The additional terms are
generated by the non-commutability of the spatial differentiation with the
average operator when 0 = §(x). Spherical averaging volumes are assumed.

viscosity) is taken proportional to the intrinsic angular momentum modulus
of each average volume. That is, we write

vs =ch, h=(hih;)? (2.3)

where ¢ is the subgrid scale coefficient. Field h must be obtained from
integration of equations (1.21), that nevertheless contain other nonlinear
turbulent flow tensors that are to be represented with a model, namely (see
§2.2 of chapter 1)

Cij = aul(<mu> — <wp><up>) <u> —(<wugu> — <wp><ugu;>)]
My = earl(<ailiy> = <ay><Tp;>]

Tensor Cj; is of inertial origin and represents the angular momentum trans-
port due to turbulent fluctuations while M;; is the intrinsic angular momen-
tum flow due to the molecular transport. If the average volume is spher-
ical or in general the weighting function of (1.4) has spherical symmetry,
the divergence of tensor < M;; > simply reduces to vV?h, without adding
any difficulty and which moreover may be also neglected at high Reynolds
numbers. When averages without spherical symmetry are considered, it is
composed by two parts, the pressure part whose principal part is of order
8% and the viscous part that scales as %52. The other terms in the angular
momentum balance (1.21) scale as §2.

From this it is easy to see that if § is of the order of 1072 the pressure
part will be smaller than the viscous part for Reynolds numbers up to 10%,
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Chapter 2. Angular momentum large eddy model

if ¢ is of the order of 1072 the pressure part will be smaller than the viscous
part for Reynolds numbers up to 1075, and so on. In table 1 the various
order of magnitude of the terms in equations (1.19) and (1.21) are listed in
the case of adoption of spherical volumes of integration. It is also shown the
situation of the relative orders of magnitude when the spatial filter width §
is a function of the point, as it is necessary to adopt near to a wall where
0 — 0 must be satisfied to apply the non slip boundary condition.

As a consequence in (1.21) the only term that needs to be modeled is Cj;.
As customary, hypothesis are to be formulated on the transport phenomena
that determine the angular momentum transport. The model we present
is composed by two terms, the first of which is associated to the variation
of scales and direction due to stretching and twisting phenomena, while
the second term accounts for the angular momentum transport due to the
fluctuations and has the structure of an auto diffusion:

2
Cij =<u;> hj+ch (8jh2‘ + 8¢hj — gashséz‘j) (2.4)

where ¢ is the same constant introduced in (2.3). As in the early works of
Mattioli, we have assumed that the physical mechanisms of turbulent trans-
port, due to small scale fluctuations, are almost the same for momentum
and angular momentum transport. Moreover, we considered the effect of
change of size of eddies to the stretching. This finally leads to transfer of
energy between different scales, producing small scale fluctuations that in-
crease turbulent transport. The hope is to include within this model this
effect through the first term. This have also a counterpart in the series
development of chapter one. In fact it is possible to obtain it as the §2
coefficient of the expansion of Cj;.

In regions of non homogeneous turbulence, where a gradient of integral
scale is present, as in the numerical simulation we have carried out and that
are described in the next chapter, will shall show how important may be
the second order term of this development due to the high values the third
order space derivatives of the velocity may reach.

A remark is needed about the mathematical structure that the insertion
of the first term on the right hand side of (2.4) is attributing to equation
(1.21) and in particular to the term consisting of the product of the filtered
vorticity by the intrinsic angular momentum. Because of (2.11) this product
may be, in the first approximation, represented by h;h;. If we set aside
for a moment the non linear diffusive term, the structure of the equation
could be considered analogous to the scalar non linear equation d;s = s,
which develops a singularity in a finite time s; 1 5o > 0. We remind to the
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extended analysis about the vorticity balance equation presented in Frisch
(1995), pp. 115-117, for which no inviscid blow-up have been observed in
numerical simulations of three dimensional Euler flows with smooth initial
condition carried out by means of an ad hoc method able to single out
eventual singularities.

From an operational point of view this model is close to the class of
simple phenomenological theories of turbulent shear flows that introduce a
rate equation for the turbulent viscosity, e.g. see Nee & Kovaznay (1969) or
Germano (1991). It is still quite simple, since only one more equation - in
this case vectorial - is added to the usual equation of motion. Moreover this
equation contains only one constant to be determined from experiments,
either made in laboratory or of numerical kind, as in Clark et al. (1979). In
Nee & Kovasznay the approach was based on ”educated-guess” concerning
the physical function fulfilled by the various terms of the proposed trans-
port scalar equation for the eddy viscosity. Our proposal is in the same way
phenomelogical, in postulating a direct proportionality between eddy viscos-
ity and angular momentum, where the rate equation added is now directly
deduced from the conservation law of the moment of momentum.

A basic physical constraint for the turbulence description is its invari-
ance with respect to changes of frame of reference. This requires, as noted by
Speziale (1991), that the modeled Reynolds stress tensor, given its inertial
nature, be form-invariant only under the extended Galilean group of trans-
formations x* = x + ¢(t)n, which allows for arbitrary relative translation
accelerations. This requirements is more severe than simple Galilean invari-
ance but far less severe than that used in continuum mechanics, where form-
invariance under arbitrary translations and rotations is considered. This
model satisfy this invariance condition.

In conclusion, we propose a method of large, or perhaps better very large,
eddy simulation based over the simultaneous integration of the volume av-
eraged momentum and moment of momentum equations, that, even if our
discussion is primary devoted to incompressible homogeneous flows, may be
also useful for possible application to turbulent flows of suspension of gener-
ally shaped particles with inertia or with an external couple applied to them.
In such situations the momentum equation might be coupled, through the
antisymmetrical part of the bulk tensor, to an angular momentum equation.

1.1 FEvaluation of the model coefficient

Notwithstanding the introduction of an additional differential equation, only
one subgrid constant ¢ appears in the model. In this section this constant,
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Chapter 2. Angular momentum large eddy model

defined by equation (2.3), is estimated assuming that the largest resolvable
wave number 27/J lies within the inertial range, that the energy transfer
rate from the resolved scales to the subgrid scales is equal to the energy
dissipation rate € and that a great separation of scales exists. In such a situ-
ation the energy of the subgrid scales is mostly that owned by their inertial
part. Under this assumption Yoshizawa (1982) determined the constant of
the scaling law for the eddy-viscosity, see equation (2.2).

The leading idea is to evaluate the constant in the scaling law (2.1). Con-
sidering average spherical volumes, of radius §, we may write the intrinsic
angular momentum h as

3

h~ —
4763

/06(5u)r4ﬂ'7“3d7“, (2.5)

where (du), is again the turbulent velocity variation over distances of the
order r. The Kolmogorov’s law yields

0, = et ()",

where a is the Kolmogorov’s constant, approximately equal to 1.5, value
used by Lilly (1967). Integral (2.5) leads then to

1
9(3c)2
h=opetot o= 289 L os0
13(2m)5
When this equation is compared with (2.2), the constant ¢ in (2.3) is conse-
quently
¢ = ~0.066.
Ch

This value has been successfully confirmed through a priori numerical test
on homogeneous isotropic turbulence, see §4.1.

2. Wall boundary conditions and initial conditions

The use of this model requires the introduction of accessory conditions for
h. As ever, difficulties concern the conditions at rigid non-slip boundaries.
There are two possibilities: i) to keep the averaging linear scale constant
and as a consequence to adopt approximated conditions at surfaces, parallel
to the walls, but embedded into the flow, as done by Schumann (1975) for
the momentum balance equation; ii) to let the linear scale § to go to zero
near the wall in order to apply there the exact condition h = 0.
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2.2. Wall boundary conditions and initial conditions

The first technique is based on the consideration that the LES method
cannot be applied very close to the wall either in the viscous turbulent sub-
layer or in the transition region, because here the model of eddy viscosity
fails since the local equilibrium has not yet reached. Shifting the frontiers
inside the inertial zone, at a distance g from the wall, will allow the imple-
mentation of the same turbulence model uniformly in all the domain. This
is accomplished by placing the first grid point at a distance A from the wall
equal to 2 ~ 3% of the entire thickness of the boundary layer. If the flow
satisfy the conditions of parallelism and stationarity in the mean the time
averaged velocity u; and the tangential stress T will satisfy, according to
Schumann (1975), the relation
o 0<u >

Vg————

?Q 8y

where ?g) is the time averaged wall tangential stress assumed constant across

<wui(x,t) >= (2.6)

the inner layer (~ first 5 %) and u; is the time mean value of the longitudinal
velocity component described by the logarithmic law of the wall.
By analogy we may extend this assumption to the treatment of the intrinsic
angular momentum boundary conditions. That would mean to put, for h
defined as in (1.20):

[[b]

h= <w> y=A~r~20. (2.7)
[<w>||

On the other hand if one estimates the time mean value of h by using the
wall law one would easily verify that

— 1 A? Ou A% 9<u

B gpue = () Gh=a = () =5 ly=a,

where k is the Von Karman constant, u, is the wall velocity. An improvement
to the Schumann’s assumption, according to the experimental findings by
Rajagopalan and Antonia (1979), was proposed by Piomelli, Ferziger & Moin
(1989) through the introduction of a time delay between the velocity in the
logarithmic region and the wall stress. However, this type of conditions may
be implemented only in presence of a direction of homogeneity, as in the
channel or in the pipe flows.

Where this is not the case, the situation gets much more complicated.
The region close to the wall must be described, as a consequence one must
allow the integration grid to go to zero at the wall to apply the correct non
slip boundary condition h = 0. Two are the problems to face with.

37
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The first is that the grid points must be necessarily addensed close to
the wall in regions that supposedly simulate the viscous and transition sub-
layers, where the general turbulence model is no more valid. Beginning
eighties the researchers carrying out numerical computation were used to
introduce wall functions attenuating the weight of the eddy viscosity, with
respect to the molecular viscosity, into the adopted model, see for example
Piomelli, Ferziger & Moin (1989) and Moin & Kim (1982). More recently,
1992 and beyond, an alternative tool to the wall function use came from the
dynamic subfilter model by Germano (1992) that allows the local determi-
nation of the mixing length in the Smagorinsky eddy viscosity model.

The second problem is related to the loss of the commutability property
between the spatial filtering and the differentiation operations and was al-
ready considered in section 2.4 of chapter 1, where an approximation based
on two different level of nested averages was proposed.

As for the initial conditions, the model here proposed has no special
requirements with respect to the standards: the initial velocity field, and
thus the initial angular momentum field, are generated possibly on a finer
grid than the one afterward used for the simulation, through algorithms
producing a spatial distribution of random numbers satisfying the solenoidal
property and the prescribed energy spectrum.

3. Numerical procedure for the validation of the model

When dealing with a new model, a validation is needed in order to asses its
capability of reproducing the key features of real flows. This is customary
done solving the equations in simple situations for which a great amount of
experimental or theoretical information is available. Turbulent flows with
these characteristics are, for example, homogenous isotropic turbulence, ho-
mogeneous shear flows and turbulent boundary layers.

The special case of a large eddy model admits an other type of test,
based on the availability of data coming from direct numerical simulation.
This test, first suggested by Clark et al. (1979), consists in the direct
computation of quantities that need to be described by a model through
direct average of the velocity field and their comparison with model prevision
for the same flow. This test does not need to perform any simulation and is
called a priori test. Although limited to the low Reynolds numbers of present
direct numerical simulations, it may be considered a more fundamental test
because of the integrated nature of the results of large-eddy simulations,
which combine the model adopted with the effects of spatial and temporal
discretization and of averaging.
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2.3. Numerical procedure for the validation of the model

The second test we performed was a simulation of the simplest turbulent
flow, homogeneous isotropic decaying turbulence. This is a flow which has
been widely studied, and which, for its particular configuration, simplifies
the numerics to be used because avoids the problems due to the presence of
rigid wall boundaries.

Results of these tests are presented in the following section. Here a
brief survey of the numerical procedures used to perform them is given.
A code based on spectral methods for spatial discretization in conjunction
with explicit low storage Runge-Kutta method for temporal integration was
developed to fit in with the model validation. The details about the imple-
mentation may be found in Iovieno & Tordella (2001).

3.1 Spatial discretization

We have to solve the following equations

Vou =0 (2.8)
ou = A(u,h)=-Vp+ V.- (—u®@u+ (v+ch)(Vu+ Viu)) (2.9)

oh = B(u,h)=V-(u@h—-h®@u+ (v+ch)(Vh+ V'h) - gv-hl)
(2.10)

where h =|/h||, on the cube (0,27)? with periodic boundary conditions

u(x + 2me;,t) = u(x,t) i=1,2,3 (2.11)
h(x + 2me;, t) = h(x,t) i=1,2,3 (2.12)

In this section we partially depart from our convention of denoting with
brackets spacial averaged variables to avoid unnecessary complicated nota-
tions, and so we shall write u instead of <u>. Likewise, the vector notation
will be often preferred to limit the proliferation of indexes. Problem (2.8-
2.12) is well suited for the use of a spectral spatial discretization due to the
very simple geometry of the flow domain, and in particular for a Fourier-
Galerkin method. Spectral methods belong to the class of discretization
schemes known generically as the method of the weighted residuals, of which
they may be viewed as a special subset. Two are the key elements of this
class of methods: the trial functions, also called the expansion or approx-
imating functions, and the test functions, also known as weight functions.
The trial functions are used as the basis functions for a truncated series
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Chapter 2. Angular momentum large eddy model

expansion of the solution while the test functions are used to ensure that
the original differential equation to solve is satisfied as closely as possible
by the truncated series expansion. This is achieved by requiring that the
residual satisfies a suitable orthogonality condition with respect to all the
test functions.

The choice of the trial functions is one of the features that distinguish
spectral methods from other discretization schemes like finite difference and
finite element methods. The trial functions for spectral methods are indefi-
nitely differentiable global functions. In the case of finite elements methods,
the domain is divided into smaller elements on which a smooth trial func-
tion is defined. The trial functions are then local in character, and well
suited for handling complex geometries, but they are not indefinitely differ-
entiable in the whole domain. Finite difference trial functions are likewise
local. This explains the difference in convergence rates for spectral methods
as contrasted to other methods, that is the convergence rate for spectral
methods depends only on the smoothness of the solution. The choice of test
functions distinguishes between the different spectral schemes, namely the
Galerkin, collocation and tau schemes. Spectral methods are distinguished
also by the particular choice of the trial functions. Details are in Canuto et
al. (1988).

In the Galerkin approach, that will be used in the following, the test
functions are the same as the trial functions. They are, therefore, infinitely
smooth functions which individually satisfy the boundary conditions. The
differential equation is enforced by requiring that the integral of the residual
by each test function to be zero. This is equivalent to require that the
residual keeps a minimum in the vector space of test and trial functions.

A spectral Galerkin method is practical for high-resolution calculations of
non linear problems only when transform methods for evaluating convolution
sums arising from quadratic non-linearities are available. Non-linear term
more complicated then quadratic non-linearities make spectral Galerkin un-
practical. Problem (2.8-2.10) and all fluid dynamics problems in general
contain only such non-linearities and then enable the use of these methods.

We look for a solution which is periodic in the hyper-interval (0,2m)3,
so that the natural and convenient choice is to take both the trial functions
space and the test function space as the set of all trigonometric polynomials
of degree < N/2. The approximate solution (u”, h?") is then represented in
the form of a truncate Fourier series
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N_q
2
uV(x,t) = ol (t)elkx (2.13)
k=—N
2
N
2
hV(x,t) = hY (t)e’kx (2.14)
k=—N

where k is the three dimensional wavenumber k = (k1, k1, k3).

The expansion in terms of an orthogonal system introduces a linear trans-
formation between functions u, h and the sequence of their coefficients flf{V
and fl{cv to which the unknowns of the problem are shifted. For their compu-
tation special numerical procedures were developed, in particular the most
efficient is the Fast Fourier Transform (FFT) (Brigham (1974)) that allows
the computation of the discrete one-dimensional transform at the cost of
only ~ 2Nlog, N instead of O(N3) operations of a direct use of its defin-
ition when the simplification of having real functions is taken in account.
The three dimensional transform can be computed by means of successive
iterations of the one dimensional transform; this requires N? transforms for
a total of about %N 3logy N operations. Equations for ﬁf(v and flf(v are ob-
tained by requiring the residual of (2.8-2.10) to be orthogonal to all the test
functions. With the inner product of L? this leads to

2 .
/ (V-uM)e k*dx =0 (2.15)
0
2 .
/ @ — AN, 1))e * *dx = 0 (2.16)
0
2T .
/ (@Y — B(u",hV))e**dx = 0 (2.17)
0

Using expressions (2.13) and (2.14) and performing the analytical spatial
differentiation of the trial functions, due to the orthogonality property of
trigonometric polynomials, we obtain

ik-u = 0 (2.18)
dale = Ay = —ikj(uju), — ikipy — vk*al +
ik (h(O5u; + O5u;))k (2.19)
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—

_ikj((ujhi)k — (@Z)k) — I/k2il]'?[k +

7

AN ~
athz'7k — Bi’k

—

—|—(h(8jhi + Oihj — g@shs)k (2.20)

Pressure may be eliminated performing the scalar product of k times (2.19)
and using (2.18). This is the Fourier correspondent of the projection onto
the divergence-free vector functions.

If it were merely an approximation problem, then uf{v , hfj would be the
truncated Fourier series of known functions; for a partial differential equa-
tion, however, the approximation (2.13-2.14) is determined by (2.18-2.20),
of which they are the solution. The k-th coefficient of the expansion decays
faster then any inverse power of k (that is, exponentially) when the function
is infinitely smooth (Rudin (1974)). In practice this decay is not exhibited
until there are enough coefficients to represent all the essential structures
of the function. The subsequent rapid decay of the coefficients implies that
the Fourier series truncated after just a few more terms represents an ex-
ceedingly good approximation of the function. This characteristic is usually
referred to as “spectral accuracy” of the Fourier method and implies an
exponential error decay for large N.

As it is evident from (2.18-2.20), a principal algorithmic component of
an efficient Fourier-Galerkin method for a nonlinear problem as that we
are going to solve is the evaluation of convolution sums that arise from
quadratic nonlinearities in (2.18-2.20) and from the computation of h. In
particular, being the transform coefficient our unknowns, we must define a
procedure to obtain the discrete Fourier coefficients of a product from the
Fourier coefficients of the factors. Let us focus on the treatment of a general
quadratic term

In the case of an infinite Fourier series expansion, we have the well known
convolution sum (Rudin (1974))

2 .
iy = lmbln, Wk = — / w(x)e” E*dx
0

Instead when u, v, w are approximated by their respective truncated Fourier
series of degree N/2, the convolution sum becomes

wy = > lln O

m+n=k,|m+n|<N/2

42



2.3. Numerical procedure for the validation of the model

where k < N/2. The direct summation implied by the discrete convolution
sum takes roughly O(N?) operations in three dimension, that makes this
prohibitively expensive from a computational point of view. The use of
transformation methods, as first proposed by Rogallo, enables this to be
computed with only O(N?log, N) operations, that is at the cost of two
discrete tranform with FFT algorithm: The approach taken in the transform
method is to use the inverse discrete transform to transform {ay, } and {0, }
to physical space, to perform there the pointwise multiplication in the grid
points and then to use the discrete transformation to determine wy. In this
way we have

1 N-1 ) 1 N-1 B
Wi = I Z w(z;)e ™ = ¥ Z u(x;)v(xj)e” KX (2.21)
j=0 =0

after inserting the discrete expansion of u and v,

v(x,t) = Z Oe™ X,

N
k<5

With the use of the orthogonality relation between trigonometric polynomi-
als, this leads us to

= > Ambnt

m+n=k
> Gmtt ) dmbat ) dmbat
m+n=k+Ne; m+n=k+Nes m+n=k+Nesg
+ > dmtat > Gmbat Y, dmbat
m+n=k+Ne;+tNes m+n=k+Ne;tNes m+n=k+Nes+Nes
+ > lin D (2.22)

m+n=k+Ne;tNezxt+Nes

The first term is the correct value of wy, the next three terms are the
singly-aliased contributions, the next three are the doubly-aliased contribu-
tions and the last term is the triply-aliased contribution to the convolution.
Several techniques were developed to avoid aliasing errors, see Canuto et al.
(1988) for a review. We use the truncation or padding technique. The key
to this dealiasing technique is the use of a discrete transform with M > N
rather then N points in each direction, in order to have more Fourier coef-
ficients and then to correctly compute the first N coefficients of (2.21).
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Let us expand {im} and {0} as

~_{ﬂk max2|k1|§% ~ {f/k max2|k1|§%
Uk = . (% .
0 otherwise 0 otherwise
(2.23)
Thus, coefficients of {ty,} and {0y} are the {um} and {0} “padded”
with zeros in the additional wavenumbers. Using the inverse discrete trans-
form operating with M points, calculating the product in the physical space
and then transforming again with M points, one gets the equivalent of
(2.22), with N substituted by M. We are clearly interested only in wg
for | k; < N/2, and now the advantage of performing the product with more
points is evident: we may choose M such that the aliasing terms in the right
hand side of the equivalent of (2.22) vanish for each k such that |k; |< N/2.
Since Uy, and oy, are zero for |m; |> N/2, |n;|> N/2, this condition requires

that
N N N

—— =< —=—-1-M

2 2 2
that is M > % — 1. So, we choose M = 3N/2, the minimum value that as-
sures the aliasing error removal. With this statement, we obtain an aliasing
free convolution sum at the cost of two transforms with a greater amount
of points. The total amount of operations is %N 3log, %N , which is only
about one half greater then the aliased method. For obvious reasons this
technique is sometimes referred to as the %—rule. When compared with other
methods developed for complete de-aliasing, like phase-shift, this technique
is the most convenient considering the amount of operations (Canuto et al.
(1988)). Furthermore, it is easy to implement, a not negligible advantage
in practical computations. The only numerical disvantage is that the rou-
tine that performs the computation of products has to handle vectors with
total dimension up to M3 = %N 3 that is about two times larger, requiring
consequently a bit more memory. The details of the implementation are
described in Iovieno & Tordella (2001).

3.2 Time discretization

The semi-discretized ordinary differential equations (2.18-2.20) require the
adoption of a time-discretization scheme in order to be solved numerically.
They fit in with the general form

0w = F(v)
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of an autonomous system, if we write v = (G, hy) and F = (Ay, By).
Inasmuch as they are ordinary differential equations, a wide set of meth-
ods are available. The spatial discretization adopted is a spectral one, and
then of infinite order, so it is useful to adopt high order schemes. Three
requirements are to be considered when choosing the temporal discretiza-
tion scheme and the time step: accuracy, stability and computation time.
When dealing with spectral methods, stability is a far more severe constrain
than accuracy. Even if implicit methods have in general a larger asymp-
totic stability region than the explicit one, they require the solution of an
additional equation at each time step, to be solved with iterative schemes
and which needs special ad hoc methods because the matrices coming from
the spectral spatial discretization are not sparse (Canuto et al. (1988)). To
avoid too many code complexity, we decided to use explicit methods, and
two classes of methods were evaluated: the standard one step Runge-Kutta
schemes (RK) and the multistep Adam-Bashford-Backward Differentiation
Euler schemes. The latter may be viewed as a modification of the classi-
cal Adam-Bashford schemes with a larger stability region. In particular,
we used a 4-th order Runge-Kutta in the low storage version by Jameson,
Schmidt and Turkel (1981) for autonomous systems,

1
vy = v"—l—ZF(U")

1
Vo = Un + gF(vl)

1
V3 = Un + §F(vg)

"t = " 4 F(vs)

that requires four evaluations of function F' for each step like all 4-th order
Runge-Kutta schemes, but that requires the storage of only one additional
vector other than v™ and v"t! for each step as contrasted to the four ad-
ditional vectors storage required by standard RK4, as we can see by its
implementation

v =" —I-iF(v")

v =" —I-éF(v)

v o— " —l—%F(v)
" "+ F(v)
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and the third order AB/BDE (Peyret (1999)),

1
M= D" = Do 2R AKBF(") — 3" + R )]

v 2

that requires only one evaluation of function F' for each step, but uses infor-
mation from the three preceeding time steps, needing then two additional
levels of storage. A multistep method requires a special implementation in
the first few time steps, where a one step scheme is necessary. The choice of
the single step scheme needs careful considerations because the error intro-
duced will be propagated through the entire simulation. Our first idea was
to couple AB-BDE3 with RK4 for the initial two steps, but considerations
of convenience led us to the use of RK4 for the entire simulation. In fact,
the region of asymptotic stability of a one-step method increases with the
order of the method, while the region of asymptotic stability of a multistep
method decreases as the order of the method increases. As an effect, the
region of stability of AB/BDES3 is about three times smaller then the region
of RK4, particularly near the imaginary axis, requiring consequently a time
step three times smaller. This reduces the advantage of a multistep method
in terms of saving of computation time due to fewer function F' evaluations.
In all simulations even performed was used RK4 alone.

Standard general results for stability are only known for linear systems.
In all the other cases suggestions to linearize equations and to compute
eigenvalues of the linearized system to estimate the stability constrain on
the time step are given. However, inertial terms that have an important role
in the dynamics of the large scales of turbulence are missed in a linearization
about a mean value of velocity equal to zero in homogeneous turbulence. So,
the linearized form reduces to a diffusive equation with preserves too little
information about the whole system. We decided instead to consider as
reference model the linear problem with

Ak ~ iakuk — kauk,
By ~ iakhy — idkuyg — bk*hy.

Coeflicients a, b, d were chosen as
a=2E3, b=v+tch, d=h

where here E is the turbulent kinetic energy, and A the modulus of angular
momentum averaged in the whole domain. Eigenvalues of this problem
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2.4. Model validation

are clearly A ~ iak; — bk? and may be used to estimate the maximum
allowable value of the time step using the standard diagrams for the region
of asymptotic stability (Peyret (1999)). The maximum allowable time step
was found to be about 0.07 simulation units for 323 computations. This
estimate proved to be conservative.

3.8 Initial conditions

Initial conditions are obtained from the NASA-Agard datasheet by Wray
(1998). It contains one instantaneous velocity field at Rey = 104.5 of a
5123 direct numerical simulation of homogeneous isotropic decaying turbu-
lence performed by Wray together with time evolutions of some statistics,
like energy, energy spectra, enstrophy and dissipation. From these data we
computed the space averaged Les fields through spatial average in cubic
volumes. Although the DNS data are in the physical space, it is more to
convenient operate in the wavenumber transform space where convolution
integrals are substituted by multiplications and subsequent truncation of
the Fourier coefficients. Let us call with a tilde the coefficient of the discrete
transform with the DNS Ny points. We have for the velocity

o Eosinkgs
Ug = Ukgk, 9Jk = H 5o
j=1

N

vk, | ki |< —

Y | vl |— 2
The angular momentum was defined in chapter 1 as

1
h; = Eiém_/ Netm (X + m)dn
Vs Jz,

Substituting the expansion of the velocity field we have, for the Fourier
coefficients of h, the following expression

s (U )k < Sin(k‘gé)) sin k;o

The choice of the linear dimension ¢ is based on the uniform grid spacing,
0 = 27/N in simulation units.

4. Model validation

4.1 A priori test

The a priori test is based on the availability of a direct numerical simulation
full turbulent velocity field. This availability allows to compute all variables
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Chapter 2. Angular momentum large eddy model

(Model)
IR,

Figure 2.1: Scatter plot of comparison between experimental values and
model predictions at vector level. Correlation level is about 0.45.

that are described by the model.

These data, as first suggested by Clark et al. (1979), are used to compute
the small scale dependent quantities that require a model in the averaged
motion equation. They are compared with the model prediction obtained
for the same flow realization from the averaged variables.

According to Clark et al. (1979), we used the correlation between the
model prediction and the directly computed quantities for the comparison.
This correlation is defined as usual as the normalized covariance

(X (v

B TP SELCATSE

: (2.24)
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2.4. Model validation

where X is the exact ’experimental’ value and M the prediction of the
model, V(X) and V(M) are their variance and the bar denotes the average
over the entire computational domain. Several variables may be consid-
ered, depending on their physical significativity. We considered three levels
of comparison: a tensorial level, between the volume averaged Reynolds
stresses, a vectorial level, between the divergences of the Reynolds stresses
(the most relevant quantity since it is the one that actually occurs in the
momentum equation) and lastly a scalar level, between the scalar product
of the divergence of the Reynolds stresses and the velocity, that relates to
the capability of the model to describe a correct energy dynamics. That is,
quantity X in (2.24) was in turn

X = Ry, OjRij, <u; > aij'j

where R;; are the turbulent Reynolds “subgrid” stresses defined in chapter
2. All quantities were computed through spatial average on cubic volumes
of the DNS velocity field by Wray. Integration was carried out analytically
by integrating the Fourier polynomials that interpolate the data on the
finer DNS grid in the same way as discussed in previous section for the
computation of the initial conditions. The dealiased padding procedure for
the evaluation of the products was also implementated.

We obtained correlations of about 0.40 at tensorial level, 0.45 at vector-
ial level and 0.92 at scalar level. A scatter plot of this comparison is shown
in figure 2.1. These are encouraging values, better than those illustrated by
Clark et al. (1979) or McMillan & Ferziger (1979) for other classical eddy
viscosity models (the improvement is of about 30%) - i.e. Smagorinsky’s,
vorticity, turbulent kinetic energy and constant eddy viscosity - which, how-
ever, were all been obtained working on a different database. However, when
we repeated this test for the above models as applied to Wray’s bata sheet,
we observed that their correlation values were rising and were approaching
those of the present model. As a consequence no real superiority of this
model may be claimed: slight differences in data bases, apparently statis-
tically similar, may have strong influences on the results. This confirms
the conclusion drawn in Clark et al. (1979) that all the models based on
the molecular diffusion analogy - eddy viscosity type models - are roughly
equally valid.

From these data it is also possible to estimate the value of the coefficient
of the model by means of the least square procedure. Values founded are
of about 0.066 + 0.005 for all data processed. This estimate is in good
agreement with the theoretical evaluation of section 1.1.
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Figure 2.2: Decay of homogeneous isotropic turbulence. Dotted line refers
to Wray’s DNS, continous line is our 322 simulation and dots are the energy
of the filtered field reconstructed from Wray’s three dimensional spectra.

4.2 Homogeneous isotropic decaying turbulence

The simplest possible flow field, homogeneous isotropic turbulence, for which
a wide body of results is available, either theoretical either coming from
numerical or laboratory experiments, was chosen as first test of the per-
formances of the angular momentum model applied to incompressible flows.
The experimental grid turbulence is simulated by solving the averaged equa-
tions within a cubic domain with periodical boundary conditions on his faces,
see §3.1. A discussion of the numerical procedure used was already given in
previous section.

The first physical quantity we checked was the decay of kinetic energy.
Using the same coefficient obtained with least squares procedure applied on
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2.4. Model validation

the a priori test, we found that the decay matches with a power law with
an exponent of about —1.23, in good agreement with grid turbulence ex-
periments (Comte-Bellot & Corrsin (1971)) and with the recent theoretical
analysis of Speziale (1992). We pursued the computation of the decay until
100 time units, but we could neither see any significative approach of the ex-
ponent to unity as predicted by the analysis by Speziale (1992) as asymptotic
limit nor a variation announcing the theoretical asymptotic value of —2.5
for the final stage of decay dominated by viscosity, see Batchelor (1953).
A further marching on time was impossible since the flow macroscale was
becoming too big with respect to the domain dimension. The high correla-
tion obtained at the scalar level explains the successful prediction of energy
decay in the simulation object of the second validation test we performed.
As customary in homogeneous turbulence, statistical averages are replaced
by spatial averages on the entire volume. Figure 2.2 shows the decay we
obtained and the one found by Wray in his simulation. The levels of energy
are different because our initial field of volume averaged velocities possesses
only a fraction of the total kinetic energy of the DNS field. A complete
comparison needs clearly to filter the DNS velocity field in order to have
data with the same physical content. This would be easy to perform if the
data of the full simulation were available. Unfortunately, this is not the
case. However, we could recover this through the three dimensional energy
spectrum that is reported in a few instants in the AGARD database. Dots
in figure 2.2 are obtained integrating the three dimensional energy spectra
in the range of wavenumbers of our simulation,

where ky is the maximum wavenumber of our 323-simulation.

A more severe test than global energy decay are correlations and en-
ergy spectra. In homogeneous isotropic turbulence the one-time correlation
tensor

Rij(r,t) = ui(x, t)u;(x +r,t) (2.25)

is by definition isotropic and reduces for decaying turbulence to R;;(r,t) =
2E(t) f(r)d;;, where E(t) = 1u;(x,t)u;(x,t) (Batchelor (1953)). We checked
both the isotropy computing the diagonal components Rii(req,t), Roa(rea,t),
Rs3(reg, t) of the correlation tensor and the self-similarity of decay. Devia-
tion from isotropy is less then 8%. Similar results are also obtained for the
energy spectra plotted in figure 2.3.

The scaling law (2.1) for angular momentum may be expressed as h ~
[2/3§%34 in homogeneous turbulence and was verified by our computa-
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Chapter 2. Angular momentum large eddy model
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Figure 2.3: One-dimensional energy spectra. Curves at t/7 = 2.1 (—), 4.2
[E— ), 10.4 (———), 208 (- ), 312 (—+-—---).

52



2.4. Model validation
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Figure 2.4: Scaling law for angular momentum during the decay, H(t) =
h/(12/36%3w).
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Chapter 2. Angular momentum large eddy model

tion, confirming the validity of the overall assumptions made in the an-
gular momentum balance equation. Figure 2.4 shows the time evolution of
H(t)/H(0), with H(t) = h/(1%/36*3w), where h and w are computed as the
mean modulus of angular momentum and vorticity of the resolved field aver-
aging in the whole domain. Deviations from unity of more than 9% appear
only after more than 30 eddy turnover times.
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Chapter 3

Shearless turbulence mixings
by means of the angular
momentum large eddy model

1. Overview

The model introduced in chapter 2 is used to analyze a more complex flow,
the mixing of two turbulent fields in the absence of mean shear. It is also a
test of the model in a more complex situation. This particular flow config-
uration allows to enlighten the mechanisms of self-interaction of turbulent
flows with different properties without being concealed by other phenomena,
in particular by the mean flow shear instabilities. This configuration was
first studied by Gilbert (1980), by means of experimental grid turbulence,
and later by Veeravalli & Warhaft (1989) again by means of grid turbulence,
but with the use of different sets of grids, realizing thus more flow situations,
all characterized by a stronger turbulent kinetic energy gradient. The exper-
imental setup consists of a wind tunnel with two grids with the same solidity
(to obtain the same mean velocity) but with different size. These two grids
with different size produce homogeneous and isotropic flows with different
turbulent kinetic energies and different integral scales. A mixing layer then
develops between them. In the hypothesis of two homogeneous isotropic
turbulent field that are going to mix and high Reynolds numbers, each field
is statistically fully defined by two parameters in the Kolmogorov’s theory:
the turbulent kinetic energy and the integral scale (or the dissipation rate).
Thus, two parameters characterize the mixing: the ratio of kinetic energy
and the ratio of integral scales.
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Chapter 3. Shearless turbulence mixings

|
X, E

Figure 3.1: Sketch of the mixing configuration.

In experimental investigations these two parameters are not independent,
inasmuch as the experimental grid makes that greater scales are always
coupled with greater energies. As opposed to them, numerical simulations
do not have this limitation, although one has to cope with the problem of
generating suitable initial condition.

The only attempt to reproduce these flows, made by Briggs et al. (1996)
with a 1283 direct numerical simulation employing the pseudo-spectral code
by Rogallo (Bardina et al. (1983)), was limited by the numerical proce-
dure used to get the initial conditions, which produced flows with the same
integral scale. Numerical simulations of this type essentially reproduce a
merging of energy and not of integral scales. As a consequence other types
of mixings here simulated were envisaged to complete, in this regard, the
study of the process of turbulence amalgamation in absence of production.

Three types of mixings of homogeneous and isotropic turbulences in the
absence of the production mechanism due to shear are then analyzed. The
first realizes an exchange of energy between turbulences with same integral
scale, the other two join turbulences with an initial large difference of inte-
gral scale either opposite or concurrent to the gradient of turbulent kinetic
energy. Unfortunately the literature does not yield results relevant to these
last cases, that are entirely new and do not have any comparison.

2. Initial conditions
Numerical simulations of these mixings may be done on a cubic domain with

periodic boundary conditions, thus allowing the use of the same code already
used for homogeneous turbulence (Briggs et al. (1996)). However, the real
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3.2. Initial conditions

problem to face with is the availability of homogeneous isotropic turbulent
flows with the prefixed values of energy and integral scales ratios. The
simplest procedure is to start from a realization of a homogeneous turbulent
field and then to operate on it to modify its statistical properties. In doing
it we take advantage from the availability of the data by Wray (1998) for
homogeneous turbulence used for the model validation. This overruns the
problems due to the use of random numbers generators to realize turbulent
fields. The datasheet by Wray is used as high energy turbulence; in the
following, we shall discuss how to obtain the lower energy flow from the
higher energy one and how to juxtapose them.

The first case we analyze is the mixing between turbulent flows with the
same integral scale. A flow with the different kinetic energy may be simply
obtained multiplicating the original one for a constant a:

u!(x,0) = aul(x,0)

This modifies energy, which is rescaled by a constant o, but does not affect
anyway the shape of energy spectra and thus the integral scale ¢, defined for
an homogeneous isotropic flow as

& Rll(T, 0, O, t)dT‘
R11(0,0,0,¢) ’

o) = Jo (3.1)

where R;;(r,t) is the velocity fluctuation correlation tensor!, remains unal-
tered. This is essentially the way employed by Briggs et al. (1996). Initial
conditions of this kind only allow to reproduce a merging of energy but not
of integral scales.

To change the integral scale we have to change the shape of energy
spectra in the low wavenumbers range, realizing a sort of “filtering” of the
velocity field. There are basicly two different ways to change the integral
scale in homogeneous isotropic turbulences to be mixed.

The first consists of merging turbulences having decayed over different
time intervals. This way has the obvious advantage that the two fields are
processed by the equations of motion and then the filtering is a natural one.
If the second field is obtained through the decaying of the first one, it will be
less energetic and with smaller scales damped out by viscosity. The result is
a young, slim and high energy turbulence merged together with an old, low
energy and large macroscale turbulence. In such situation one will face a
gradient of integral scale always opposite to that of the kinetic energy. This
is the second type of mixing we studied.

!No primes are used to denote fluctuations because the mean velocity is zero.
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Chapter 3. Shearless turbulence mixings
The second way of “filtering” consists in directly modifying the spectrum.
This is done applying a real filter to the velocity:
'l (k,0) = o' (k,0)(k)

The initial conditions of the third example of mixing we present belong
to this category. In it we subtract energy directly from the smallest wave
numbers (the larger scales), with the function § chosen as

0 for | k|<k
N kil —
g =4 LRI =k ki <[k [[< ko
ky — K
1 for ||k ||> ko

we obtain a flow with less energy and with a smaller macroscale, thus real-
izing a mixing with concurrent gradients of both energy and integral scale.
Function g as above does not affect the inertial range of turbulence.

These procedures to differentiate energies and integral scales may be
combined. For example, a second field with the same energy and different
spectrum may be obtained through multiplication by a constant greater
than one a decayed turbulence (with a greater scale) or a filtered one (with
a smaller scale).

The second step to obtain the initial conditions is to merge these two
flows. This is made through a weighting function that artificially creates a
smooth transition region between them. Let us call z3 the non homogeneous
direction; the initial velocity field is obtained as

w.(x,t) = ul (x,t)p(x3) + ull(x,t)(1 — p(x3)) (3.2)
where the following function is used
1
p(xs) = 5[1 + tanh(bxs3) tanh(b(zs — 7)) tanh(b(xs — 27))] (3.3)

with coefficient b > 0. This function may be extended periodically out of
(0,27) as a infinitely smooth function. When applied to the first case, in
which the second velocity field is merely a constant multiplying the first one,
this procedure is equivalent to multiply u’ for function p*(x3) given by

pi(x3) =a+ 1_TOZ[l + tanh(bxs)) tanh(b(x3 — 7)) tanh(b(zs — 27))] (3.4)

With regard to the shape function used by Briggs et al. (1996) to modulate
the velocity, a Gaussian function extended periodically, our function does
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3.2. Initial conditions

Flow parameters A B C Veeravalli-Warhaft
(3:1 perforated plate)
Err/E; 0.15 0.017 0.70 0.16
Crr /e 1 2.7 0.64
(rr/er) 053 19 0.89 0.45
Arr/Ar 1 8.6 0.77 1.13
High energy region parameters AB,C Veeravalli-Warhaft
(3:1 perforated plate)
Er[m%s72 0.050 0.051
I [m] 0.048 0.0178
A7 [m] 6.2-1073 5.3-1073
1
1 =1/E}s] 0.22 0.078
Rey, 950 371

Table 3.1: Flow parameters for the four reference mixings; E, £ and A\ are
the turbulent kinetic energy, the integral scale and the Taylor microscale;
the subscripts I and II refer to the high and low energy regions, subscript &
refers to quantities estimated through the Kolmogorov equilibrium law. The
viscosity is v = 1.6 - 107°m?s~!. Labels A, B, C refer to mixings without
gradient of integral scales, with concorde and opposite gradients of integral
scale and energy.

not have only the advantage of preserving the continuity of its derivatives at
periodicity boundaries, but it is also able to leave unaltered the two velocity
fields outside a thin region of thickness roughly proportional to parameter
b, being approximatively constant far from 0, w, 2.

The resulting velocity given by (3.2) has a non-zero divergence and then
must be projected into the space of divergence-free vector functions to en-
force continuity. This is made solving a Poisson equation: for Ladyzhen-
skaya’s theorem the space of vector functions may be decomposed as direct
sum of the spaces of divergence free and of curl free vector functions,so we
can write

w.=u+Vey, V-u=90

taking the divergence we obtain
V¢ =V -u,

Solving this problem we have ¢ and then we are able to know u = u, —
V¢, V -u = 0. This operation leads only to small modifications of the
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Figure 3.2: Energy spectra for the three reference mixings. Lines are at

t/71 =0, 1.1 and 2.2. Low energy region data are offset by 1072

velocity field in the mixing layer. Then the fields u and h are computed
averaging as stated in section 3.4.

A short remark is needed about the computation of the initial conditions
for the angular momentum h. In the first and in the last cases we operated
directly on the DNS data, so we could calculate it directly from integration,
in the same way of previous chapter. In the second case, we were forced to
use directly a velocity field obtained as a result of the decay of homogeneous
turbulence by means of our large eddy simulation (see previous chapter).
We use for h the same treatment reserved for u. This produces a vector
error in the computation of the initial condition for h equal to

Ah ~ p/(23)8% (< ud > — < Wbl > < ul > — <l >0).

Flow parameters obtained through these manipulations are summarized
in table 4.1 for the three reference situations that will be discussed in the
following sections. Energy spectra for the initial stage of evolution are shown
in figure 3.2. Additional simulations and further investigations are addressed
later.
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3.3. Mixing without integral scale gradient
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Figure 3.3: Mixing layer thickness (a) and relative dishomogeneity (b) for the
first three reference cases A (—), B(———), C(—-—-— ). Data from indipent
evolution of relative energy difference the two fields of case C is also plotted
for reference in (b) (-----). Dots in (a) refer to the self-similarity stage of

decay.

3. Mixing without integral scale gradient

The first numerical experiment presents the mixing of turbulences with dif-
ferent turbulent kinetic energies distributed quite similarly over the wave
numbers. Field II was obtained from field I after multiplication by a con-
stant, chosen such that the parameters of Veeravalli & Warhaft (1989) (3:1
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Chapter 3. Shearless turbulence mixings

perforated plate) are reproduced as close as possible. This experiment has
already been carried out by Briggs et al. by means of direct numerical
simulation and of course in laboratory by means of grids experiments by
Veeravalli & Warhaft (1989), in a very detailed and complete manner. As
done by Briggs et al. we will use this experiment as the standard comparison
reference. Whenever the two mixing field are obtained simply multiplying
by a constant an initial velocity field, as done by Briggs et al. (1996) and
by us to reproduce their simulation, the numerical experiment is bounded
to be an apparent example of mixing of turbulence scales, as we remarked
above in our discussion on initial conditions.

Briggs et al. used in their paper approximated values for the integral
lengths coming from the hypothesis of statistical equilibrium. However their
simulation (cfr. Figure 8, page 225), as well as the experiments of Veeravalli
& Warhaft and the present simulation, could not satisfy this hypothesis,
since the global Reynolds numbers were too low. The values of Re; reached
were less than 500, that is a typical value today computing machines or
laboratory facilities may simulate. With these values relation

E3/2
/= , (3.5)
€
must be replaced by
le
32 f(Re), (3.6)

where function f tends toward 1 in the limit for Re — oo. However, (see
Batchelor (1953), page 106) measurements at lower Reynolds numbers with
grid turbulence show that f is a roughly decreasing function of Re and its
value almost halves when the global Re quadruple from 25 to 107. As a
consequence the integral length ratio computed from Kolmogorov may be
affected by an error as great as 75 % for a turbulence mixing with a Re
ratio near 4. Taking this into account the ratio of integral scales presented
by Briggs et al. could change from 1.66 to 0.95 (see there figure 8 and table
1, from which it can be deduced that the ratio between the two Rey of the
turbulences to be mixed is 107/25). For all our simulations, to show the
entity of the approximation induced by the adoption of the hypothesis of
statistical equilibrium, we have listed in table 1 the ratios of integral scales
estimated using both definitions. In the following we always used the values
given by the correlation integral.

Note that, even if in principle a laboratory experiment is not affected
by this problem because the two merging flows are materially generated by
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3.3. Mixing without integral scale gradient
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Figure 3.4: Normalized energy, skewness and kurtosis for the mixing without
gradient of integral scale (Case A). Curves at t/77 =4.2 (—), 6.3 (+-- - ),

), 10.5 (——). Dots refer to data by Veeravalli & Warhaft (1989),
squares to data by Briggs et al. (1996).
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Chapter 3. Shearless turbulence mixings

different grids, so that two different integral scales must be present, however
the scales estimated through the Kolmogorov law will be in the same way
approximated due to the low Re values realized in their facility (cfr. table 1
in Veeravalli & Warhaft) and so the ratio of scales was closer to unity than
they extimated. This partially justifies the adoption of their experiments as
comparison for the our mixing without gradient of scales.

In treating the results, all statistical averages, denoted in the following
with an overbar, are replaced by averages on planes at constant xs3, where
coordinate x3 is along the non-homogeneous direction. The first variable
to check in an energy mixing is clearly the kinetic energy, which is used to
normalize spatial positions within the mixing layer. A normalized kinetic
energy is defined as

E - Emm
Ema:c - Emzn

where F,,q and E,,;, are the maximum and minimum values of the kinetic
energy F. As proposed by Veeravalli & Warhaft (1989) and later used by
Briggs et al. (1996), we define as centre of the mixing the point z,, where
the normalized energy E* is equal to 1/2, and then a conventional mixing
layer thickness ¢1/5 as {12 =|z0.25 — To.75 |, With .25 and x¢.75 the points
where E* is equal to 1/4 and 3/4.

The results we obtained for this mixing case are illustrated in figure 3.3,
where the temporal evolution of global quantities as the normalized layer
thickness and normalized maximum variation of energy AFE are plotted, and
in figure 3.4, that contains the kinetic energy distributions across the mixing
layers at various times of decay together with the distributions of skewness
and kurtosis of the transversal fluctuation

E* =

3 4

u u
Sy = —3_ K3=—.
—53/2 52

U3 U3

For Gaussian random variables we have S = 0 and K = 3; even if turbulence
is not truly Gaussian Frisch (1995), it does not differ much from these values,
that may be kept as reference values. So, the observed deviation may be
considered a measure of intermittency.

Our data are in fair agreement with the results both by Veeravalli &
Warhaft and by Briggs et al., also plotted for comparison in 3.4. Note that
in the paper of the latter, see for example figure 4 there, a systematic energy
shift is apparent where the position x,, does not correspond to the definition
of mixing centre used also by them. If we perform a shift of their data in
order to have F =1 /2 for x3 = x,,, their statistics collide with ours.
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After few eddy turnover times the statistical moments collapse over a
typical distribution shape, that remains approximatively unchanged until
the mixing process is on. Observing the temporal evolution for many eddy
turnover times we reached a state characterized by the flattening of all the
distributions. As a consequence a mixing region could no more be recog-
nized. At this point the mixing is under disruption and the entire flow slowly
decays towards a new state of uniformity to be asymptotically reached.

The time interval where the mixing shows a near self-similar behaviour
lasts in this case about six time units. During it the mixing grows in space
while losing energy at a constant rate of 3.3x 1072, see figure 3.3(b). The flow
of energy from the high-energy region downward is described by the skewness
and kurtosis distributions, see figures 3.4(b), 3.4(¢). These are characterized
during all the self-similarity interval by values very different from those
of the Gaussian equilibrium and present a peak situated in the region of
low variance. Anisotropy is thus associated to strong intermittency. As
explained in both Veeravalli & Warhaft and Briggs et al., the intermittency
is due to energetic eddies penetrating the weak region against the gradient
of energy. The normalized position s of this peak is the parameter apt to
quantify this penetration distance. In case A its value was 0.7, the transfer
of energy having started inside region I at a normalized coordinate z3 = —1
and ended in region IT at x3 = 1.

4. Mixing with opposite gradients of integral scale and
energy

This second experiment consisted in the mixing of two homogeneous tur-
bulences already decayed over two very different time intervals. The high
energy region was Wray’s simulation, while the turbulence in the other re-
gion was obtained from the data field of region I after a further decay lasting
31 revolving units. So doing we have directly two distinct scales: the old
lived turbulence with a large integral scale and low energy, the young tur-
bulence with a small integral scale and a lot more of energy. For the spectra
employed to start this mixing case see figure 3.2. The integral scales ratio
is £17/€r = 2.7 (computed according to its definition (3.1)) and the energy
ratio Err/Er = 1.7 x 1072, Thus the gradient of scales is contrary to that
of the kinetic energy. We privileged a high ratio ¢;;/¢; because we wanted
to be really sure to mix turbulences with very different integral scale. If we
had kept the ratio Err/Er equals to that of case A we would have got a
ratio £77/¢; =~ 1.5. According to the above discussion this value seems too
low to enlighten the differences in behaviour obtained through a numerical
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(E'Em'n)/(Emax'Emin)

Figure 3.5: Normalized energy (a), skewness (b) and kurtosis (¢) for the
mixing with gradient of integral scale opposite to that of energy (Case B).
Curves at t/77 =32 (—), 4.2 (----+), 63 (——-— ), 9.5 (———).
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3.5. Mixing with concurrent gradients of integral scale and energy

simulation.

This situation of mixing led to a fast and intense flow of energy along the
anisotropy direction, since the initial energy difference in the two turbulence
undertaking the mixing is very high, see figures 3.3 and 3.5. The normalized
decay rate of the mixing, defined as the time derivative of the ratio between
energy difference and mean energy of the two flows, is in this case 7.7 x 1072,
more twice as previous mixing. With regards to case A, the peak value for
the skewness distribution doubled, while the kurtosis peak increased of about
50% at the beginning of the decay in the self-similar time interval and then it
lowered at a value nearly equal to that of case A. Instead the spatial position
of these peaks stayed more or less unchanged with respect to case A, in fact
they resulted to be placed at about 0.8 < s < 1. Thus the penetration of this
mixing did not result appreciably higher, notwithstanding an energy ratio
higher than the one of the preceding example, where actually the gradient
of scales was zero. Schematizing, very fast but small structures are not able
to penetrate over long distances whether contrasted by comparatively large,
even if very weak, structures. The layer thickness was smaller than in case
A, however its temporal growth was similar to that of case A, see figure

3.3(a).

5. Mixing with concurrent gradients of integral scale and
energy

This case was the completing numerical experiment of the study about the
mixing of turbulences in the lack of the production process of turbulent
energy. Here concurrent gradients of energy and scales are considered. Such
a situation is obtained merging turbulences that differ in the energy content
at the smallest wave numbers, following the procedure described in section
2, with filtering parameters k1 = 4, ko = 6. Since the two spectra coincide
at the high wave numbers, this part of inertial structures is not involved in
the energy exchange that will be carried on through the interaction between
the largest eddies of regions I and II. In our simulation this process turned
out to be very slow and complicate. Looking at figure 3.6(a,b) one sees that
the mixing layer grows not self-similarly, up to about 13 eddy turnover times
77, beyond which it decreases until t/7; = 25, where it restarts the growth
showing then self-similarity. Such a behaviour corresponded at first to an
oscillating normalized energy flow, after few eddy revolving times this flow
became positive and slowly increased until, inside the self-similar interval, it
became constant . Thus in the initial transient the two turbulences did not
efficiently interact and only entered the phase of constant normalized energy
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Figure 3.6: Normalized energy (a), skewness (b) and kurtosis (¢) for the
mixing with gradient of integral scale concurrent to that of energy (Case
C). Curves at t/77 = 26 (—), 28 (-----), 30 (——-— ), 32 (———), 34

(——).
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transfer at ¢t/7;7 = 25. There the decay rate for AE/E); was 8.5 x 1073,
value kept approximatively constant until £/7; = 38. The normalized energy
difference grew until E); decreased faster than AFE (t/77 ~ 9), afterwards it
decreased because AFE went down faster than Fj;. This should be expected
in advance from Kolmogorov’s relation between energy, dissipation rate and
integral scale. Note that the decay of Fjs is not significantly influenced by
the process of mixing and that, in the case of independent decay, function
AFE/E); is always decreasing, see figure 3.3(b).

This overall conduct recalls some of the lineaments of the instability
of a forced Kelvin-Helmoltz laminar layer, see Ho & Huerre (1984), that,
contrary to what happens here, is a problem controlled by the instability
production mechanism associated to the presence of a mean shear. In par-
ticular, the blocked growth of the turbulcence mixing observed in this last
mixing reminds of the vortex pairing and the subsequent inhibition of the
merging of the paired vortices, phenomenon also leading to the layer growth
suppression. After this stage the Kelvin-Helmoltz layer rekeeps the growth.
In this case, the interaction is mainly due to the largest eddies and thus
the exchanges are markedly slower than previous cases. This is only in part
intuitive, because if it is true that the large structures are also the slowest
ones, a turbulence amalgamation delay lasting more than 20 revolving times
was unexpected. The penetration is very enhanced. Looking figure 3.6 (b,c)
one sees that the position s of the peaks of the skewness and kurtosis was
now almost triplicated. In this case the more energetic and now larger ed-
dies of region I were displaced for a great distance inside the weak region II.
However, it must be remarked that the definition of self-similarity used here
is more severe than that of Veeravalli & Warhaft (1989) and Briggs et al.
(1996), who considered only self-similarity of energy distributions, while we
simultaneously considered a self-similar behaviour of energy, skewness and
kurtosis. In fact a self-similar stage of decay is observed for energy long be-
fore the self-similarity of skewness and kurtosis and lasts more. For this case
of mixing the divergence between angular momentum and vorticity has been
checked. In figure 3.7 the path of a particle (part a) crossing the mixing
layer is shown, together with the angle between h and <w> and the ratio of
their modulus (part b). It is possible to observe as these quantities tend to
become very different in presence of strong spatial non homogeneity. Many
other particle paths were observed to show a similar behaviour, although
they were not enough to a statistically definitive conclusion. Part (a) of this
figure contains also a visualization of the slow displacement of the axis of
the mixing towards the low energy side of the domain.
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Figure 3.7: (a) path along x3 of a particle crossing the mixing layer, dotted
lines are the positions where the normalized kinetic energy is 0.25 and 0.75

respectively, see §4.3, (b) evolution along the path of the ratio h/(6%*w) (—-—
-—) and of cos = (w-h)/(wh) (—).

70



3.6. Accuracy estimates

6. Accuracy estimates

Prior to further discuss our results, a short note on their accuracy is needed.
In the numerical procedure that has been used, the periodic boundary con-
ditions create two mixing layers. Due to their growth the two homogeneous
regions tend to become even smaller and the extremes of our distributions
in figures 3.4, 3.5, 3.6 and 3.8 may be affected by the influence of the second
mixing layer and must not be relied upon. This effect is not significant with
the exception of case C of previous section, in which the simulation was
carried out for much longer times and we observed greater mixing thickness.

Accuracy estimates for our simulation are deduced a posteriori for this
set of numerical simulations. The source of all the turbulence fields that were
used was the direct numerical simulation of homogeneous and isotropic tur-
bulence by Wray (1998) (see section 2). The raw data by Wray, after the
preliminar filtering and before computing the mixing by LES method, pre-
sented a dishomogenity level of about 8% (maximum variation of kinetic
energy with respect to the average kinetic energy) and skewness and kurtosis
values slightly different from that of the statistical equilibrium (respectively
0.0240.2 instead of 0 and 2.9+ 0.3 instead of 3) when averages are taken on
planes at constant x3. Our simulations kept these characteristics. Check-
ing the temporal evolution of the statistical properties of the parts of the
field placed outside the mixing and, so by hypothesis still in equilibrium, we
found for the kinetic energy distribution a dishomogeneity of about +5%
at t/71 = 10 and of £7% at t/7; ~ 30. For the skewness and kurtosis the
largest displacement with respect to the equilibrium canonical values was
observed in case of the mixing with integral scale gradient opposite to that
of energy, where the old lived turbulence (¢/77 = 31) was one of the mixing
turbulences. Here in region II, outside the mixing, we found S3 = 0.074+0.27
and K3 = 2.7 £ 0.35. Horizontal lines in figure 3.4, 3.5, 3.6 and 3.8 refer to
this ranges of values. Tests with an enhanced spatial resolution (48% and 643
points), but with the same filter width, confirmed the values reported above
about homogeneity and only minor changes about characterizing quantities,
showing that the numerical resolution was sufficient to comply with the fil-
tering length. In case A, for example, the difference in the peaks of skewness
and kurtosis resulted less than 4%.

These considerations should be kept in mind when analyzing these re-
sults.
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Figure 3.9: Intermittent penetration for different initial parameters. Dots
refers to mixings without gradient of integral scales, squares to mixings with
an adverse gradient of integral scales; (;;/¢r = 1.9 (left) and 2.7 (right)
respectively. Estimated errors are also reported.

7. Discussion

To complete the characterization of shearless mixings other simulations were
carried out to have a more quantitative evaluation of the dependence of
the global features of these mixings on the two parameters involved: the
initial ratio of energies and the initial ratio of integral scales. Quantities
investigated and compared were skewness’ peak positions, energy difference
decay and spectra.

The first feature we investigated was the dependence of the penetration
on the ratio of kinetic energy. As discussed above, the position of the peaks
of skewness and kurtosis is a variable apt to quantify it. In this end we
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Figure 3.10: Decay of energy difference. (a) Mixings with gradient of integral
scale: (—) Ej/Err =58, 4r1/tr = 2.7, (——) Er/Err =24, 61/ = 1.9, (—
-—-—) Er/Err =143, ¢11/¢r = 0.64. (b) Mixings without gradient of integral
scale: ( . ) E]/E]] = 1.43, (—) E]/EH = 6.7, (———) E]/E[[ = 24,
(= —— ) Er/Err = 58.

started from the mixing between turbulences with the same integral scale,
and repeated the simulation for the additional values Er/Err = 1.4, 24,
58. The last one has the same energy ratio of the mixing with an older
turbulence (see section 4.4) and its statistics are reported in figure 3.8, to
be compared with figures 3.4 and 3.5, while the first one reproduces early
experiments by Gilbert (1980). He could not see any significant variation,
attributable to the mixing process, of skewness and kurtosis with respect
to values outside the mixing layer due to the small difference of energy
characterizing his experiment.
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integral scale ratio different mixing configurations. Mixings without gradient
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In effect our simulation meets the same difficulty in identifying both the
mixing centre and the position of the peaks. This explains the great error
bar in the corresponding point in figure 3.9. This figure shows the position
of these peaks in these simulations. Results about these mixings between
turbulences with the same spectral characteristics fit in with a power law

~o()
s=a B

with a = 0.40, b = 0.27. In this figure we report also results from the two
mixings with opposite gradients of energy and integral scale (that of section
4.4 (case B), with ¢;7/0; = 2.7, Er/Err = 58 and an additional case with
lrr/er = 2.0, E;/Err = 24). Points referring to them are both below the
curve, showing the effect of an adverse gradient of scale in reducing pene-
tration. Instead, the only simulation we performed with parallel gradients
of energy and scales, with s =~ 2.6 would lie far above the curve.

Figure 3.10 shows the time evolution of the relative dishomogeneity
AE/E)y between the two turbulent fields that are mixing. We note that

(0]
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all mixing without initial gradient of integral scale show a linear decrement,
at least in the region of self-similarity, with almost the same decay rate.
Instead, all the other cases show different decay rates, that appear to be
smaller if £7/¢rr < 1, greater in the opposite situation.

This suggests a relation between the rate of decay of the normalized
energy difference and the ratio of integral scales. So, the relative variations
of istantaneous integral scales were investigated. It must be remarked at
first that they are not easy to compute, due to limitations in the spatial
domain on which averages are computed. This is not due to low numerical
resolution of the simulations, but only to the choice to average on planes at
constant x3. In fact, the same problem was faced by Briggs et al. (1996)
with their 1283-DNS, and they were not able, by their explicit admission, to
compute one-dymensional spectra smooth enough to obtain reliable integral
scales. They finally reverted to an approximate deduction from Kolmogorov.
We overcame the problem simply averaging on a greater domain, that is, on
the whole high- and low-energy regions outside the mixing layers. In this
way the possibility of investigating the variations of ¢ in the mixing layer
was lost, but we were able to have reliable estimates of £ in the two regions.

In figure 3.11 the decay rate of relative energy difference versus the in-
stantaneous ratio of integral scales is plotted. As the mixing goes on, the
ratio £;/¢rr tends towards unity, but it still remains significantly different
from one in the self-similarity time interval. In the same time the decay
rate approaches the values for the mixing without gradient of integral scale.
Values for the case with initial ratio ;/¢;; equal to one are plotted as ref-
erence. We note that, notwithstanding our procedure to compute integral
scales, a not negligible dispersion in the data is still present.

Finally, the anisotropy in the mixing layer was investigated. We observed
that anisotropy is relevant only to energy flow contributions, because the
three components of velocity are all equally significant in the whole flow,
with differences limited to less than 10%. This confirms the result shown
by the simulation by Briggs, Ferziger et al. (1996). Instead, we found that
the energy flow has a very different behaviour, that is a general feature
present in every kind of mixing. In the self-similar interval and also outside
it, about half the energy flow per unit surface along the non-homogeneous
direction u2ug + u3us + u3 was contributed by the velocity fluctuations in

the z3 direction (that is, from u3), while the other two directions roughly
equally contributed to the remaining half, as it must be because they are
equivalent. Figure 3.12 shows the different contributions to energy flow in
different points at different istants for a single case, while figure 3.13 shows
the time evolution of relative contributions of the ug to the total energy flow
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Figure 3.13: Energy flow anisotropy: contribution of the velocity component
along the non homogeneous direction to the total energy flow. Curves for

mixings without gradient of scales and Er/Er = 6.7 (——-— ), Er/Err =24
(—), Er/Err = 58 (+-- - ) and with gradient of scales, E;/Ej; = 58,
Cir/l; = 2.7 (———) and E;/E; = 1.43, {7/f; = 0.64 (—- - -—- - ) are

reported. Except for the latter case, points are all in the self-similar stage
of decay.

for different mixings. They are evaluated in correspondence with the peak of
skewness and kurtosis, in corrispondence of the maximum dishomogeneity.
In cases A and B such a redistribution - at the initial instant of merging all
the components of the velocity fluctuation clearly must equally contribute -
was reached in only two eddy turnover times.
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The role of angular momentum and the symmetry of flow tensors in fluid
dynamics is discussed. It is remarked that the flow symmetry property may
be broken only by the simultaneous presence of various causes: presence
of the fluid of extended particles owing inertia with external couples acting
selectively only on them; rough collision interaction in case of flow of grains
(with finite dimension), non local and non central interaction at the subcon-
tinuum level. In such situations the momentum and moment of momentum
balances are physically coupled through the antisymmetric part of the stress
tensor. Special continuum theories, like the micropolar fluids, were devel-
oped to represent this situations and were also used for turbulent flows. It
was shown that, inasmuch as any spatial filtering is not able to introduce
asymmetries in homogeneous flows, even in turbulent motion, the applica-
tion of model suited to structured flow field directly to turbulent motions of
a homogenous fluid is not justified.

A novel representation of the angular momentum balance in terms of
an infinite sequence of independent differential equations operating on the
momentum has been determined. These equations may be viewed as higher
order vorticity balances. They could be useful to describe the evolutions of
the correlation variable coming from the filtering of the equations for the
turbulent motion.

Based on the assumption of a turbulence transport coefficient propor-
tional to the intrinsic angular momentum, a large eddy scale turbulent
model, which would have possible extensions to flows containing a dispersion
of generally shaped particles, provided with inertia or submitted to exter-
nal couples is proposed. When applied to incompressible flows, this model
shows anyway a proper scaling with both the integral and filtering lengths,
eventually leading to the independence of the subgrid coefficient from the
filtering length. This property may turn out of some convenience for numer-
ical simulation of non structured flows. The model validation is extensive
and comprehends a priori test and the simulation of homogeneous isotropic
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decaying turbulence.

This new model was applied to shearless turbulence mixings. Simulations
of mixings between fields with the same integral scale are in fair agreement
with previous results. Also different qualitative configurations not present
in the literature were analyzed and the differences of the characteristics of
these mixings once the spectral properties of the two merging fields are dif-
ferentiated changing the integral scale were showed. Two limiting situations
are then possible: - mixing between a young energetic (smaller scale) tur-
bulence and an old slow (larger scale) turbulence, in which case the energy
flow is inevitably opposite to the gradient of integral scale, - mixing between
fields filtered one from the other by reducing the energy associated to the
smallest wave numbers, in which case the energy flow is concurrent to the
gradient of integral scale. In the first the self-similarity was quickly reached,
the exchange of energy was very fast and intense, but the lateral intermittent
penetration into the low energy side of the mixing was on the average not
much changed with respect to the case where the mixing process involved
only the energy and not the integral scale. In the second case a slow evolu-
tion was taking place where the layer thickness grew, then diminished and
then again started to grow, in the end assuming a self-similar behaviour.
The penetration resulted enhanced a lot: the high energy structures were
also the largest ones and the position of the maximum of intermittency and
normalized energy exchange was displaced three times more.
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